Генетика бактерий и вирусов. Генетический материал бактерий Генетика бактерий и вирусов

Генетика бактерий и вирусов. Генетический материал бактерий Генетика бактерий и вирусов

Генетика микроорганизмов как наука

Замечание 1

Примерно до конца $30$-х годов $XX$ века считалось, что микроорганизмы не имеют ядерного аппарата. Поэтому вопросы наследственности и изменчивости микроорганизмов тщательно не изучались.

Лишь с изобретением электронного микроскопа появилась возможность рассмотреть субмикроскопическую структуру клетки вообще и микроорганизмов в частности.

С начала $40$-х годов ученые-генетики обращают свое внимание на микроорганизмы. Бактерии, микроскопические грибы и вирусы становятся объектами генетических исследований. Формируется новая отрасль микробиологии – генетика микроорганизмов.

Генетика микроорганизмов – это раздел общей генетики, в котором предметом изучения служат микроорганизмы (бактерии, вирусы, микроскопические грибы) и особенности их наследственности и изменчивости.

Характерной особенностью микроорганизмов является гаплоидный набор хромосом или кольцевая молекула ДНК. Это дает возможность мутациям проявиться уже в первом поколении потомков.

Начало микробиологических генетических исследований

Благодаря изучению субмикроскопической структуры клеток микроорганизмов удалось найти ответы на многие вопросы генетики. Американсие генетики О.Т. Эйвери, К. Мак-Леод и М. Маккарти, проводя опыты на пневмококках, получили первые доказательства того, что материальным носителем наследственности является молекула ДНК. Исследования хлебной плесени позволило сформулировать положение, что один ген программирует синтез одной полипептидной цепи (одногобелка).

Но особенно интенсивно стали исследовать микроорганизмы с точки зрения генетики после того, как американскими микробиологами С. Лурия и М. Дельброком на примере кишечной палочки было доказано универсальность закономерностей мутационного процесса. Они доказали, что и бактерии подчиняются мутационным закономерностям.

В науке появился новый принцип изучения изменчивости у бактерий – клональный анализ. Он заключается в тщательном исследовании потомства одной клетки. Эта клетка становится родоначальником клона.

Изучение бактерий

В результате кропотливых исследований американским генетикам Дж. И Э. Ледербергам удалось доказать, что у бактерий мутации возникают независимо от условий их культивирования. Они разработали метод отпечатков, который позволил очень упростить приемы отбора микроорганизмов с желаемыми свойствами для дальнейших исследований. Они доказали, что больших популяциях клеток бактерий мутации происходят неупорядочено – спонтанно.

В $1946$ году было доказано, что бактериям тоже присущ половой процесс, были открыты явления конъюгации хромосом и рекомбинации генов, переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага.

Существует мнение, что в кольцевой молекуле нуклеиновой кислоты клеток прокариот «прочтение информации» зависит от места начала «считывания». В зависимости от того, с какого нуклеотида начался этот процесс, находится и синтез того или иного белка.

Изучение фагов

Изучая особенности взаимоотношений «бактерия – бактериофаг», американские генетики открыли явление трансдукции (переноса генов между бактериальными клетками с помощью фагов) и обнаружили рекомбинацию у фагов. Это дало возможность изучать вопросы наследственности на уровне молекул (молекулярный уровень организации материи).

Немецкие микробиологи исследовали молекулу РНК. Для каждой из групп микроорганизмов была разработана методика исследований.

Генетика грибов и водорослей

Низшие грибы и водоросли имеют половой процесс несколько отличный от полового процесса других организмов. Благодаря их изучению появился новый метод – тетрадный анализ. Исследуя эти организмы, ученые разрабатывали методику объединения ядер генетически различных штаммов микроорганизмов. Все эти методы могут в дальнейшем послужить для выведения организмов с заданными качествами, для разработки новых поколений антибиотиков и биологически активных веществ, а также для борьбы со многими видами заболеваний растений, животных и, конечно же, человека.

Замечание 2

Но вопросы генной инженерии требуют осторожного подхода к изучению и применению полученной информации на практике. Ведь не ясно, к каким последствиям может привести появление генетически модифицированных организмов в природе и в человеческом организме.

Лекция № 6. Генетика бактерий и вирусов.

Молекулярная биология, изучающая фундаментальные основы жизни, является в значительной степени детищем микробиологии. В качестве основных объектов изучения в ней используют вирусы и бактерии, а основное направление- молекулярная генетика основана на генетике бактерий и фагов.

Бактерии- удобный материал для генетики. Их отличает:

Относительная простота генома (сопокупности нуклеотидов хромосом);

- гаплоидность (один набор генов), исключающая доминантность признаков;

- различные интегрированные в хромосомы и обособленные фрагменты ДНК ;

Половая дифференциация в виде донорских и реципиентных клеток;

Легкость культивирования, быстрота накопления биомасс.

Общие представления о генетике.

Ген- уникальная структурная единица наследственности, носитель и хранитель жизни. Он имеет три фундаментальные функции .

1.Непрерывность наследственности - обеспечивается механизмом репликации ДНК.

2.Управление структурами и функциями организма - обеспечивается с помощью единого генетического кода из четырех оснований (А- аденин, Т- тимин, Г- гуанин, Ц- цитозин). Код триплетный, поскольку кодон - функциональная единица, кодирующая аминокислоту, состоит из трех оснований (букв).

3.Эволюция организмов- благодаря мутациям и генетическим рекомбинациям.

В узкоспециальном плане ген чаще всего представляет структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи (белка). Хромосома состоит из особых функциональных единиц- оперонов.

Основные этапы развития (усложнения) генетической системы можно представить в виде следующей схемы:

кодон  ген  оперон  геном вирусов и плазмид  хромосома прокариот (нуклеоид)  хромосомы эукариот (ядро).

Генетический материал бактерий.

1.Ядерные структуры бактерий - хроматиновые тельца или нуклеоиды (хромосомная ДНК). У бактерий одна замкнутая кольцевидная хромосома (до 4 тысяч отдельных генов). Бактериальная клетка гаплоидна, а удвоение хромосомы (репликация ДНК) сопровождается делением клетки. Вегетативная репликация хромосомной (и плазмидной) ДНК обусловливает передачу генетической информации по вертикали- от родительской клетки- к дочерней. Передача генетической информации по горизонтали осуществляется различными механизмами- в результате конъюгации, трансдукции, трансформации, сексдукции.

2.Внехромосомные молекулы ДНК представлены плазмидами, мигрирующими генетическими элементами- транспозонами и инсервационными (вставочными) или IS - последовательностями.

Плазмиды- экстрахромосомный генетический материал (ДНК), более просто устроенные по сравнению с вирусами организмы, наделяющие бактерии дополнительными полезными свойствами. По молекулярной массе плазмиды значительно меньше хромосомной ДНК, содержат от 40 до 50 генов.

Их выделение в отдельный класс определяется существенными отличиями от вирусов.

1.Среда их обитания- только бактерии (среди вирусов, кроме вирусов бактерий- бактериофагов имеются вирусы растений и животных).

2.Плазмиды сосуществуют с бактериями, наделяя их дополнительными свойствами. У вирусов эти свойства могут быть только у умеренных фагов при лизогении бактерий, чаще же всего вирусы вызывают отрицательный последствия, лизис клеток.

3.Геном представлен двунитевой ДНК.

4.Плазмиды представляют собой “голые” геномы, не имеющие никакой оболочки, их репликация не требует синтеза структурных белков и процессов самосборки.

Плазмиды могут распространяться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса. В зависимости от наличия или отсутствия механизма самопереноса (его контролируют гены tra- оперона) выделяют конъюгативные и неконъюгативные плазмиды. Плазмиды могут встраиваться в хромосому бактерий- интегративные плазмиды или находиться в виде отдельной структуры- автономные плазмиды (эписомы ).

Классификация и биологическая роль плазмид.

Функциональная классификация плазмид основана на свойствах, которыми они наделяют бактерии. Среди них- способность продуцировать экзотоксины и ферменты, устойчивость к лекарственным препаратам, синтез бактериоцинов.

1.F- плазмиды - донорские функции, индуцируют деление (от fertility - плодовитость). Интегрированные F - плазмиды- Hfr- плазмиды (высокой частоты рекомбинаций).

2.R- плазмиды (resistance) - устойчивость к лекарственным препаратам.

3.Col- плазмиды- синтез колицинов (бактериоцинов)- факторов конкуренции близкородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов.

4.Hly- плазмиды- синтез гемолизинов.

5.Ent- плазмиды- синтез энтеротоксинов.

6.Tox- плазмиды- токсинообразование.

Близкородственные плазмиды не способны стабильно сосуществовать, что позволило объединить их по степени родства в Inc- группы (incompatibility- несовместимость).

Биологическая роль плазмид многообразна, в том числе:

Контроль генетического обмена бактерий;

Контроль синтеза факторов патогенности;

Совершенствование защиты бактерий.

Бактерии для плазмид- среда обитания, плазмиды для них- переносимые между ними дополнительные геномы с наборами генов, благоприятствующих сохранению бактерий в природе.

Мигрирующие генетические элементы - отдельные участки ДНК, способные определять свой перенос между хромосомами или хромосомой и плазмидой с помощью фермента рекомбинации транспозазы . Простейшим их типом являются инсерционные последовательности (IS - элементы) или вставочные элементы , несущие только один ген транспозазы, с помощью которой IS- элементы могут встраиваться в различные участки хромосомы. Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, индукция мутаций. Величина IS- элементов не превышает 1500 пар оснований.

Транспозоны (Tn - элементы) включают до 25 тысяч пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два Is- элемента. Каждый транспозон содержит гены, привносящие важные для бактерии характеристики, как и плазмиды (множественная устойчивость к антибиотикам, токсинообразование и т.д.). Транспозоны- самоинтегрирующиеся фрагменты ДНК, могут встраиваться и перемещаться среди хромосом, плазмид, умеренных фагов, т.е. обладают потенциальной способностью распространяться среди различных видов бактерий.

Понятие о генотипе и фенотипе.

Генотип- вся совокупность имеющихся у организма генов.

Фенотип - совокупность реализованных (т.е. внешних) генетически детерминированных признаков, т.е. индивидуальное (в определенных условиях внешней среды) проявление генотипа. При изменении условий существования фенотип бактерий изменяется при сохранении генотипа.

Изменчивость у бактерий может быть ненаследуемой (модификационной) и генотипической (мутации, рекомбинации).

Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу.

Стандартное проявление модификации- распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении S R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей.

Мутации - скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).

Одновременно у бактерий имеются различные механизмы репарации мутаций , в том числе с использованием ферментов- эндонуклеаз, лигаз, ДНК- полимеразы.

Генетические рекомбинации- изменчивость, связанная с обменом генетической информации. Генетические рекомбинации могут осуществляться путем трансформации, трансдукции, конъюгации, слияния протопластов.

1.Трансформация- захват и поглощение фрагментов чужой ДНК и образование на этой основе рекомбинанта.

2.Трансдукция- перенос генетического материала фагами (умеренными фагами- специфическая трансдукция).

3.Конъюгация- при непосредственном контакте клеток. Контролируется tra (transfer) опероном. Главную роль играют конъюгативные F- плазмиды.

Генетика вирусов.

Геном вирусов содержит или РНК, или ДНК (РНК- и ДНК- вирусы соответственно). Выделяют позитивную (+) РНК, обладающую матричной активностью и соответственно- инфекционными свойствами, и негативную (-) РНК, не проявляющую инфекционные свойства, которая для воспроизводства толжна транскрибироваться (превращаться) в +РНК. Механизмы репродукции различных вирусов очень сложные и существенно отличаются. Основные их схематические варианты представлены ниже.

1. вирионная (матричная) +РНК  комплементарная -РНК (в рибосомах)  вирионная +РНК.

2. - РНК  вирусная (информационная) +РНК  - РНК (формируется на геноме зараженной клетки).

3. однонитевая ДНК: +ДНК  +ДНК -ДНК  +ДНК -ДНК +ДНК  +ДНК.

4. ретровирусная однонитевая РНК: РНК  ДНК (провирус)  РНК.

5. двунитевая ДНК: разделение нитей ДНК и формирование на каждой комплементарной нити ДНК.

Генофонд вирусов создается и пополняется из четырех основных источников:

двух внутренних (мутации, рекомбинации) и двух внешних (включение в геном генетического материала клетки хозяина, поток генов из других вирусных популяций).

Комплементация - функциональное взаимодействие двух дефектных вирусов, способствующее их репликации и горизонтальной передаче.

Фенотипическое смешивание - при заражении клетки близкородственными вирусами с образованием вирионов с гибридными капсидами, кодируемыми геномами двух вирусов.

Популяционная изменчивость вирусов связана с двумя разнонаправленными процессами - мутациями и селекцией, связанными с внешней средой как индуктором мутаций и фактором стабилизирующего отбора. Гетерогенность вирусных популяций- адаптационный генетический механизм, способствующий пластичности (устойчивости, приспособляемости) популяций, фактор эволюции и сохранения видов во внешней среде.

Генофонд вирусных популяций сохраняется за счет нескольких механизмов:

Восстановления изменчивости за счет мутаций;

Резервирующих механизмов (возможность перехода любых, даже негативных мутаций в следующую генерацию)- комплементация, рекомбинация;

Буферных механизмов (образование дефектных вирусных частиц, иммунных комплексов и др.), способствующие сохранению вируса в изменяющихся внешних условиях.

    Явление наследственности связано со спецификой молекулы ДНК, которая программирует процессы индивидуального развития особей бактерий. У высших растительных и животных организмов вся генетическая информация заложена в ядре, содержащем полный набор хромосом. Аналог ядра у бактерий представлен нуклеотидом, состоящим из одной уложенной или развернутой молекулы ДНК. Генетический материал бактерий представлен ДНК, в молекулах которой закодирована информация о структуре клеточных белков.

    Двунитевая молекула ДНК-хромосомы бактерии кишечной палочки состоит из 1,7х107 нуклеотидных пар. Ее молекулярная масса составляет примерно 3% сухой массы клетки бактерии. Единицей наследственности является ген, представляющий собой участок ДНК, в котором зашифрована последовательность аминокислот в полипептидной цепи, характеризующий отдельный признак особи. В отличии от растений и животных бактерии преимущественно являются гаплоидными – содержат одинарный набор генов и совмещают функции гаметы и особи.

Состав нуклеотида бактерий

    Синтез каждого фермента, или более точно полипептидной цепи контролируется отдельным геном генома. Если в геноме бактерии отсутствует ген данного фермента, этот фермент не может быть синтезирован. ДНК представляет собой длинный полимер – полинуклеотид. Каждый нуклеотид состоит из азотистого основания – аденина, гуанина, цитозина или тимина и остатка сахара дезоксирибозы и фосфатной группы, с помощью которых нуклеотиды соединяются между собой.

ГЕНЕТИЧЕСКИЙ КОД

  • ГЕНЕТИЧЕСКИЙ КОД – составляет особая последовательность нуклеотидов на определенном участке ДНК. Последовательность оснований в ДНК характеризует собой структурную единицу – кодон, который кодирует каждую из 20 аминокислот, входящих в состав белков.

ГЕНОТИП

  • ГЕНОТИП – это комплекс генов, наследственно переданный особи материнской клеткой. Комплекс внешних и внутренних признаков бактерий, таких как форма, размеры, окраска, химический состав, биохимические и микроскопические особенности соответствуют фенотипу, то есть внешнему проявлению генотипа.

Транскрипция

  • Процесс синтеза белка, закодированный молекулой ДНК, осуществляется в несколько этапов и требует участия трех типов РНК:

  • Информационной (матричной) – и-РНК, транспортной – т-РНК, рибосомальной – р-РНК. Информационная РНК образуется припомощи специфического фермента РНК-полимеразы на матрице молекулы ДНК. При этом генетическая информация, определяемая типом последовательности чередования нуклеотидов, копируется в молекуле и-РНК.

Рибосомы бактерий

  • Информационная РНК направляется к рибосомам, находящимся в цитоплазме, которые представляют собой рибонуклеопротеиды, содержащие 63% РНК и 37% белка.

  • Рибосомы бактерий содержат три типа собственной рибосомальной РНК 5S, 16S, 26S. Кроме РНК субъединицы рибосом имеют индивидуальные белки. Предполагают, что белки выполняют функции формирования структуры рибосом и центров связывания активизированных аминокислот, а также обеспечивают правильность считывания матрицы.

Трансляция

    Перевод четырехбуквенного (А,Т,Г,Ц) языка нуклеиновых кислот (ДНК и РНК) на язык протеинов называется трансляцией. Реализация наследственной информации происходит в определенных условиях внешней среды. Различия в условиях среды накладывают свой отпечаток на развитие особей бактерий. Поэтому развитие бактерий необходимо рассматривать как следствие действий двух важнейших факторов – действия генотипа, влияния на особь факторов внешней среды.

Гетероморфизм

  • Под влиянием физических, химических и биологических воздействий некоторые микроорганизмы могут изменять свои морфологические признаки, принимая формы больших шаров, утолщенных нитей, колбовидных образований, ветвлений и т.д. Явление морфологических изменений у микробов Н.Ф.Гамалея назвал гетероморфизмом .

Диссоциация

    Гетероморфизм легко возникает под влиянием солей лития, а также фага, кофеина, сульфаниламидов, антибиотиков, различных излучений, действия магнитных полей и других факторов. Любое изменение морфологических признаков, как правило, сопровождается изменением и физиологических свойств. Например, при посеве на плотную питательную среду чистой культуры образуются колонии двух основных типов: гладкие – S –формы и шероховатые R-формы. Такого рода изменчивость получила название диссоциация.

Генетическая изменчивость микроорганизмов

  • Изменчивость бактерий затрагивает и их потребность в метаболитах. Под влиянием антибиотиков, химических веществ, ультрафиолетового излучения у некоторых микробов появляется потребность в витаминах, аминокислотах, факторах роста, в которых не нуждались исходные штаммы.

  • Таким образом, в отличие от исходных прототрофов эти микроорганизмы превращаются в ауксотрофов.

Ненаследственная фенотипическая изменчивость

  • Под действием некоторых веществ могут изменяться ферментативные свойства бактерий. Еще более важным моментом является то, что под влиянием различных факторов изменяется степень патогенности у болезнетворных микробов.

  • Изменчивость микроорганизмов, возникающая под действием факторов внешней или внутренней среды, которая не сопровождается изменением структуры генотипа называется ненаследственной фенотипической изменчивостью.

Аттенуация

  • В процессе снижения степени патогенности микроорганизмов – аттенуации происходят наследственные генотипические изменения химического состава бактерий. У микобактерий туберкулеза уменьшается содержание липидов, у возбудителя чумы – белка, у туляремийных бактерий и бруцелл – снижение способности липидов к комплексообразованию.

L-формы бактерий

  • При воздействии пенициллином, химическими веществами или иммунными сыворотками на стафилококки, микобактерии туберкулеза и многие другие бактерии, возникают L-формы бактерий у которых нарушается синтез клеточной стенки. Микробная клетка превращается в большой шар с вакуолями, гранулами, зернистостью.

МУТАЦИИ

  • При необратимой утрате определенных звеньев биосинтеза клеточной стенки, у бактерий наблюдается наследственная генотипическая изменчивость – мутационная изменчивость.

  • Нуклеоидная мутация – происходящая в нуклеоиде.

  • Цитоплазматическая мутация – в ДНК цитоплазмы.

Происхождение мутации

  • Спонтанные, образующиеся под воздействием внешних факторов без вмешательства экспериментатора.

  • Индуцированные, возникающие в следствии обработки микробной популяции мутагенными факторами.

По механизму действия мутации

  • 1. Точечные или мелкие, при которых в результате замены, вставки или выпадения одной пары азотистых оснований ДНК внутри самого гена изменяется генетический признак бактериальной клетки. Наблюдается спонтанная или индуцированная реверсия, т.е. восстановление утраченного или утрата приобретенного признака.

По механизму действия мутации

  • 2. Крупные или множественные мутации, при которых наблюдается, в основном, летальный исход.

  • 3. Супрессорные мутации – это эффекты приобретения или утраты признака, непосредственно не связанного с действием мутагена на структурный ген, ответственный за этот признак. Закономерный исход супрессорных мутаций – восстановление исходного генетического статуса.

Генетические рекомбинации

    Суть явления – в реципиентную клетку попадает фрагмент экзогенной ДНК бактерии-донора, который взаимодействует с цельной хромосомой реципиента, в результате чего происходит рекомбинация (перераспределение) генетического материала с образованием рекомбинанта, имеющего признаки обоих родителей. Его хромосома состоит из двух хромосом - реципиента с фрагментами донора.

Фертильность

  • Для осуществления возможности скрещивания донор должен обладать свойствами фертильности (плодовитости).

  • Рекомбинация произойдет при наличии у реципиента рекомбинационных генов, а также при отсутствии факторов ограничения экспрессии чужеродной ДНК.

ТРАНСФОРМАЦИЯ

  • Это передача генетической информации, путем введения в клетку реципиента изолированной ДНК бактерии-донора. Трансформация эффективна в пределах одного вида.

  • Межвидовая трансформация получена у бактерии родов Neisseria, Bacillus, Streptoccocus.

ТРАНСДУКЦИЯ

  • Перенос генетической информации от донора реципиенту посредством умеренных бактериофагов, которые в отличие от вирулентных, не всегда вызывают лизис бактериальной клетки.

  • В трансдукции принимают участие бактерия-донор, трансдуцирующий фаг и бактерия-реципиент.

  • Различают три вида трансдукции:

Общая(неспецифическая) и специфическая трансдукция

  • Неспецифическая - передается любой участок хромосомы бактерий или несколько участков, определяющих целый ряд наследуемых признаков.

  • Специфическая – осуществляется группой фагов, которые способны трансдуцировать гены, расположенные рядом с местом включения генома фага в нуклеоид бактерий при ее лизогении.

Абортивная трансдукция

  • Когда внесенный фагом фрагмент нуклеоида не включается в нуклеоид реципиента и находится в цитоплазме, а при делении передается только одной клетке. У второй дочерней клетки остается генетический аппарат реципиента. Это проявляется в антигенной конверсии, влекущей за собой изменение антигенной структуры.

КОНЪЮГАЦИЯ

  • Это половой путь передачи генетического материала при непосредственном контакте клеток донора и реципиента. Необходимое условие – наличие у донора фактора фертильности. У Гр.- бактерий есть этот фактор. Скрещивание F + донора и F- реципиента сопровождается плодовитостью, F- х F- бесплодностью.

Конъюгативная плазмида

  • Это внехромосомная генетическая структура бактерий, представляющая замкнутое кольцо двунитевой ДНК, находящейся в цитоплазме в автономном состоянии и ориентирующаяся на передачу хромосомы, будучи с нею в интегрированном состоянии.

ПЛАЗМИДЫ

  • Плазмиды несут необязательные для клетки-хозяина гены и придают бактериям дополнительные свойства, которые могут им обеспечить преимущества по сравнению с бактериями, не имеющими плазмид.

  • Плазмиды несут факторы фертильности, резистентности, токсигенности, гемолизиса.

Фактор передачи

  • У конъюгативных плазмид в структуре есть генетический элемент трансмиссивности, обеспечивающий передачу генетической информации.

  • Плазмиды, не имеющие такой частицы и неспособные к самопередаче незываются неконъюгативными.

  • К нам относятся туберкулоцины, пестицины, вибриоцины.

  • Плазмиды – это очень удобная модель для генной инженерии.

Генетика микроорганизмов . Генотипическая изменчивостьРеферат >> Биология

И передается при конъюгации в клетки бактерий -реципиентов. Перенос генетического материала (ДНК) детерминируется tra-опероном... название «транскапсидация». Практическое значение учения о генетике микроорганизмов и генная инженерия в медицинской микробиологии...

  • Генетика микроорганизмов . Фенотипическая и генотипическая изменчивость

    Реферат >> Биология

    ... генетического материала от одной бактерии к другой при непосредственном контакте клетки. Клетки, передающие генетический материал , ... фрагмента донора. Практическое применение генетики микроорганизмов Достижения генетики широко применяются в народном хозяйстве...

  • Генетика и генетический код

    Реферат >> Биология

    К самоудвоению генетического материала и устойчивому сохранению... микроорганизмов - продуцентов антибиотиков, аминокислот. В последнее десятилетие возникло новое направление в молекулярной генетике ... бактерии и ввести его в генетический аппарат другой бактерии ...

  • тема: Генетика бактерий

    1865 год Мендель установил существование генов. 1869 Фишер выделил ДНК. Через 80 лет доказано что носителем генов является ДНК, 1953 Крик, Уотсон – расшифрована структура ДНК.

    Ген выполняет следующие основные функции :


    1. Непрерывность наследования генетической информации благодаря механизму репликации ДНК

    2. Управление структурами и функциями организма с помощью генетического кода

    3. Благодаря мутации и генетическим рекомбинациям, которые происходят в гене осуществляется эволюция всех живых организмов.
    Генетический код расшифрован и характеризуется следующими свойствами:

    1. Код триплетный → кодон состоит из 3 букв и кодируют одну аминокислоту

    2. Код не перекрывающийся

    3. Число бессмысленных кодонов очень маленькое (3 из 64)

    4. Последовательность расположения кодов в гене определяет последовательность положения аминокислотных остатков в полипептидной цепи

    5. Код универсален
    Генетическая система обладает уникальными свойствами:

      1. Способность к самоудвоению с помощью механизма саморепликации

      2. Самовыражение (экспрессия) с помощью регулируемого синтеза матричной РНК

      3. Самообновление с помощью мутаций, рекомбинаций и самоподвижных элементов

      4. Самоисправляемая (ревизия, репарация, супрессия)
    Ген – структура определяющая последовательность аминокислот в ППЦ.

    Гены вирусов и эукариотов состоят из экзона (кодирующий) и интроны (не кодирующие). У вирусов в одном и том же фрагменте могут существовать 2 гена с разными рамками считывания. Ген не всегда строго ограниченный участок хромосомы, есть подвижные участки у бактерий. Ген требует регулирования (регуляторы, промотеры). Ген единственные носитель и хранитель жизни, а белок определяет форму и способ жизни.

    Эволюция генетической системы шла в направлении кодон(триплет) → ген → оперон → геном вирусов и плазмид → хромосома прокариотов → хромосома эукариотов (ядро).

    Объем генома у представителей различных живых организмов сильно отличается. Можно измерить в следующих единицах: молекулярная масса нуклеиновых кислот либо в количестве нуклеотидных пар либо в количестве генов. Все эти значения сопоставимы ген в среднем включает 1000 пар нуклеотидов (вируса гепатита В – 4 гена; ВИЧ – 9 генов)

    Генотип – вся совокупность генов у данного вида организма. 10%-70% не кодирующие гены (повторяющиеся последовательности), они не относятся к генотипу и составляют геном.

    Фенотип – внешние проявления генотипа в конкретных условиях внешней среды при изменении внешних условий меняется генотип, но генотип при этом сохраняется.

    ^ Особенности генетики бактерий.

    Хромосомы бактерий располагаются свободно в цитоплазме, не ограничены мембранами, но во всех случаях ДНК бактерии связана с рецепторами на мембране.

    Бактерии гаплоидны, содержание ДНК не постоянно, может достигать 2, 4, 6, 8 – хромосом (у других организмов оно постоянно и удваивается только перед делением).

    Передача генетической информации идет не только по вертикале (материнская→дочерняя), но и по горизонтали (конъюгация, трансформация)

    Помимо хромосомного генома имеется не хромосомный генетический материал, который называется плазмидным геномом (эписомы, внехромосомные факторы наследственности). Это наделяет клетку дополнительными биологическими свойствами.

    Содержание ДНК у бактерий зависит от условий их роста или от времени клеточного цикла бактерии, которые осуществляется каждые 20-30 минут, поэтому и количество может соответствовать (4,6,8) и это сопровождается увеличением количества рибосом (этапы транскрипции, трансляции идут одновременно, возможность регулировать скорость размножения главное условие сохранения вида.

    ^ Особенности репликации.

    Вегетативная репликация: обуславливает передачу информации по вертикали, контролируется хромосомными и плазмидными генами.

    Конъюгативная репликации: перенос материала по горизонтали и контролируется только плазмидными генами, при этом происходит достройка нити ДНК комплиментарной нити от донора к реципиенту.

    Репаративная репликация: механизм при котором устраняется из ДНК поврежденный участок

    Стркуктурно-функциональной едициней является оперон – группа структурных генов связанных с особым геном оператором, он управляет всей группой структурных генов и идет как самостоятельная единица, находится под контролем гена модулятора. В хромосоме гены распределяется друг за другом контролируя разные процессы, но законченный результат можно получить выбирая не последовательно (как игра на пианино).

    ^ Хромосомная карта бактерий

    ромосомы бактерий имеют кольцевую форму, гены располагаются линейно, их можно последовательно расположить. Локализация генов определяют в минутах их переноса, и хромосомная карта это 0-100 минут.

    Определение локализации гена на хромосоме называется картированием, а их расположение хромосомной картой масштаб которой в минутах. В настоящее время есть карты: кишечной палочки.

    ^ Изучение организации генома бактерий.

    Проводится с помощью ферментов – рестриктаз способные расщепить ДНК в специфических участках, которые они комплиментарны. В настоящее время известно более 100 рестриктаз. С помощью них можно получить рестрикционные фрагменты ДНК → рестрикционный анализ. Сравнение рестрикционных фрагментов и называется рестрикционным анализом, который может быть использован для идентификации. Делают копии цепей ДНК, которые имеют липкие концы с помощью которых фрагменты вновь могут образовывать кольца. Именно за счет липких концов можно получать между разными фрагментами ДНК – рекомбинантные ДНК. Если эти фрагменты получены с помощью одной рестриктазы они могут вступать во взаимодействия между собой.

    Метод клонирования. Выделенный фрагмент ДНК с помощью рекомбинантных молекул вводится в самореплицирующую генетическую структуру – в плазмиду, вирус и дальше они выполняют роль вектора для клонирования. Их сшивают с фрагментом ДНК – геномом, который будет размножаться в составе плазмилы или в составе геном бактериальной клетки. Такие гибридные ДНК также можно выделить из клетки за счет рестрикции – вырезания. С помощью клонирования можно получать большое количество копий любого фрагмента ДНК, который можно метить радиоактивной меткой.

    Метод сегвинирования. Используют для определения последовательности расположение ДНК в клонируемом фрагменте ДНК. Методы секвинирования и клонирования это методы помогающие изучить геномы в т. ч. геном человека (2004).

    ^ Плазмидный геном бактериальной клетки.

    Плазмиды – фрагменты ДНК с небольшой молекулярной массой, несут от 40 до 50 генов. Они выполняют также регуляторную и структурную функцию. Плазмиды могут располагаться либо в цитоплазме, могут иметь кольцевую структуру. Могут находится в интегрированном состоянии хромосомы (эписомы).

    Свойства плазмид:


    1. Не обязательные генетические элементы бактерий (дополнительные).

    2. Обладают саморепликацией и автономностью, независимостью от хромосомы клетки. ДНК бактерии им не управляет.

    3. Склонны к трансмиссии как по вертикали, так и по горизонтали обеспечивая при этом гегетическую изменчивость бактерий.
    Виды плазмид:

    F-фактор – кольцевая молекула. Ее гены кодируют образование половых ворсинок, размножение бактерий, скорость размножения с ней связывают конъюгацию, участвует в горизонтальной передаче генетического материала и передаются различные свойства: устойчивость к антибиотикам, лактозо положительность.

    R-фактор – детерминирует продукцию фермента β-лактамызы → устойчивость к антибиотикам. В составе этой плазмиды может быть специальный tra-оперон (ген отвечающий за перенос) → плазмида легко передается.

    Hly – плазмида связана с продукцией гемотоксина → более токсигенные бактерии.

    Col-фактор отвечает за продукцию колицинов (антибиотикоподобные вещества) обеспечивающих преимущество бактерий перед другими.

    Плазмиды био деградации: участвуют в расщепдлении веществ загрязняющих окружающей среды.

    Плазмида умеренного фага - фаг который способен распознать, внедрится, в клетку, но вызвать лизис бактерии вызвать не может. Может покидать клетку, захватывать часть генетического материала клетки и внедряясь в другую клетку участвует в переносе генетического материала (трансдукция)

    Плазмиды есть конъюгативные (способные к переносу, имеющие в своем составе ген переноса), неконъюгативные (не участвуют в рекомбинации). По совместимости есть несовместимые друг с другом, совместимые.

    ^ Транспазоны, IS-последовательности.

    Относятся к дополнительным генетичесим элементам

    Th-маленькие участки ДНК (прыгающие) - в составе могут быть Rгены. Могут находится как в составе ДНК, так и в составе плазмид. Странспазонами связны мутации бактерии поскольку они могут перемещаться и вызывать мутации типа делеции, инверсии, дупликации.. Транспазоны ограничены с двух сторон IS-последовательностями.

    IS-фрагменты – маленькие фрагменты ДНК, повторяющиеся, не способны к репродукции в свободном состоянии не участвуют. Основные функции: регуляторные (способны включить - выключить ген). Координируют взаимодействие транспазонов плазмид, фагов как между собой так и с хромосомой клетки хозяина.

    ^ Изменчивость бактерий.

    Модификационная: адаптивная реакция организмов в ответ на условия внешней среды. Могут изменять морфологические, культуральные, ферментативные свойства.

    Генотипическая: затрагивает генотип клетки:


    • Мутационная – изменение первичной структуры ДНК, могут быть связаны с выпадением нуклеатида, делецией могут носить характер инверсии. Могут быть хромосомные, плазмидные. Могут быть спонтанные, индуцированные. Значение эволционные изменение, сопроваждается селекцией.

    • Комбинативная: трансформация – передача генетического материала в виде раствора ДНК донора к реципиенту, трансдукция – перенос генетического материала от донора к реципиенту с помощью умеренных фагов (неспецифическая, специфическая), конъюгация – передача генетического материала от донора имеющего F-фактор к реципиенту через половые ворсинки с образованием новых штаммов.
    ^ Значение генетики в эволюции бактерии.

    Особенности генетики вирусов .


    1. Молекулярная масса геном вирусов 10 6 меньше чем масса эукариотической клетки.

    2. Организация генетического аппарата такая же

    3. Генов от нескольких единиц до десятков.

    4. Принцип 1 ген – молекул РНК – 1 белок у вирусных ДНК нарушен и иРНК вирусов может направлять синтез 2 и более белков.
    Способы увеличения генетической информации у вируса .

    1. Двукратное считывание одной и той же и РНК, но с другого кодона.

    2. Сдвиг рамки трансляции

    3. Сплайсинг (вырез интронов)

    4. Транскрипция с перекрывающихся областей нуклеиновой кислоты → размывается границы гена и понятие ген приобретает функциональное значение.
    ^ Виды изменчивости у вирусов.

    Модификационная . В основном для вирусов определяет клетка хозяина. Модификация затрагивает суперкапсид.

    Генотипическая . Мутационная, то есть изменение в первичной структуре нуклеотидов.

    Рекомбинативная . Происходит при одновременном заражении клетки хозяина двумя или более вирусами, происходит обмен генами → образуются рекомбинантные штаммы вирусов, которые содержат гены 2 и более штаммов.

    ^ Генетическая реактивация . Процесс при котором вирионы дополняют друг друга в следствии перераспределения генов во время их репликации. Это наблюдается у вирусов с фрагментарным геномом. При скрещивании таких вирусов происходит образование полноценных единиц.

    Комплементация (дополнение). Не генетически й процесс при котором вирус снабжает своего партнера (как правило дефектного) недостающими компонентами белка, а не нуклеиновыми кислотами. Характерна для многих вирусов – аденовирусы могут культивироваться только в присутсвии SV 40 – вирус. Вирус гепатита В является помощником для δ - вируса (HDV).

    ^ Фенотипическое смешивание . Наблюдается при совместном культивировании двух вирусов наблюдаем, что геном одного вируса заключается в капсид другого вируса. Генотип при этом не меняется

    ^ Генная инженерия.

    Биотехнология использование биологических объектов (клеток микроорганизмов, грибов, животных, людей) для получения полезных для человека продуктов, которые не могут быть получены другим путем. Основное направление это генная инженерия. Появилась с 1972 когда появилась первая работа по генной инженерии.

    Объект генной инженерии: ген или группа генов.

    Источники получения: вирусы, прокарилты

    Цель: пересадка гена в другие, гетерогенные системы, экспрессия этого гена и т.о. получать полезные продукты (белки, фермены, гормоны, лекарственные препараты и другие БАВ)

    Инструмент генной инженерии: ферменты рестриктазы с помощью которых можно получать фрагменты генома. Рестриктазы имеют липкие концы для сшивания различных генов. Если их нет используют лигазы .

    Этапы генной инженерии:


    1. выделение гена из клетки с помощью рестриктаз из генома клетки.

    2. присоединение гена к вектору (переносчику) – плазмиду, ДНК, РНК втрусов, умеренные фаги, искусственные плазмиды. Основные требования к вектору – должен выполнять роль саморепликации. Этот этап сопроваждается образованием рекомбинантной ДНК (ген+вектор)

    3. введение рекомбинантной ДНК в гетерогенную систему. В качестве этой системы выступает клетка прокариотов, эукариотов, соматическая.

    4. экспрессия введенного гена, создаются условия что бы рекомбинантная молекула начала самореплицироваться и заставила клетку продуцировать вещество, которое кодирует перенесенный ген.

    5. клонирование гена и выделение продукта, очитка продукта и выхода продукта
    С помощью генной инженерии получают инсулин, интерферон, гормон роста, тромболитики, антикоагулянты, антигены (ВИЧ, малярийного плазмодия, бледной трипанемы) используют для создания диагностических систем, вакцины (против HBV, ВИЧ, малярии).

    Молекулярная биология, изучающая фундаментальные основы жизни, является в значительной степени детищем микробиологии. В качестве основных объектов изучения в ней используют вирусы и бактерии, а основное направление- молекулярная генетика основана на генетике бактерий и фагов.

    Бактерии - удобный материал для генетики. Их отличает:

    Относительная простота генома (совокупности нуклеотидов хромосом);

    Гаплоидность (один набор генов), исключающая доминантность признаков;

    Различные интегрированные в хромосомы и обособленные фрагменты ДНК;

    Половая дифференциация в виде донорских и реципиентных клеток;

    Легкость культивирования, быстрота накопления биомасс.

    Общие представления о генетике.

    Ген - уникальная структурная единица наследственности, носитель и хранитель жизни. Он имеет три фундаментальные функции.

    1.Непрерывность наследственности - обеспечивается механизмом репликации ДНК.

    2.Управление структурами и функциями организма - обеспечивается с помощью единого генетического кода из четырех оснований (А - аденин, Т - тимин, Г - гуанин, Ц - цитозин). Код триплетный, поскольку кодон- функциональная единица, кодирующая аминокислоту, состоит из трех оснований (букв).

    3.Эволюция организмов - благодаря мутациям и генетическим рекомбинациям.

    В узкоспециальном плане ген чаще всего представляет структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи (белка). Хромосома состоит из особых функциональных единиц - оперонов .

    Основные этапы развития (усложнения) генетической системы можно представить в виде следующей схемы:

    кодон à ген à оперон à геном вирусов и плазмид à хромосома прокариот (нуклеоид) à хромосомы эукариот (ядро).

    Генетический материал бактерий.

    1.Ядерные структуры бактерий - хроматиновые тельца или нуклеоиды (хромосомная ДНК). У бактерий одна замкнутая кольцевидная хромосома (до 4 тысяч отдельных генов). Бактериальная клетка гаплоидна, а удвоение хромосомы (репликация ДНК) сопровождается делением клетки. Вегетативная репликация хромосомной (и плазмидной) ДНК обусловливает передачу генетической информации по вертикали - от родительской клетки- к дочерней. Передача генетической информации по горизонтали осуществляется различными механизмами - в результате конъюгации, трансдукции, трансформации, сексдукции.

    2.Внехромосомные молекулы ДНК представлены плазмидами , мигрирующими генетическими элементами - транспозонами и инсервационными (вставочными) или IS- последовательностями.

    Плазмиды - экстрахромосомный генетический материал (ДНК), более просто устроенные по сравнению с вирусами организмы, наделяющие бактерии дополнительными полезными свойствами. По молекулярной массе плазмиды значительно меньше хромосомной ДНК, содержат от 40 до 50 генов.

    Их выделение в отдельный класс определяется существенными отличиями от вирусов.

    1.Среда их обитания - только бактерии (среди вирусов, кроме вирусов бактерий- бактериофагов имеются вирусы растений и животных).

    2.Плазмиды сосуществуют с бактериями, наделяя их дополнительными свойствами. У вирусов эти свойства могут быть только у умеренных фагов при лизогении бактерий, чаще же всего вирусы вызывают отрицательный последствия, лизис клеток.

    3.Геном представлен двунитевой ДНК.

    4.Плазмиды представляют собой “голые” геномы, не имеющие никакой оболочки, их репликация не требует синтеза структурных белков и процессов самосборки.

    Плазмиды могут распространяться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса. В зависимости от наличия или отсутствия механизма самопереноса (его контролируют гены tra- оперона) выделяют конъюгативные и неконъюгативные плазмиды. Плазмиды могут встраиваться в хромосому бактерий - интегративные плазмиды или находиться в виде отдельной структуры- автономные плазмиды (эписомы) .

    Классификация и биологическая роль плазмид.

    Функциональная классификация плазмид основана на свойствах, которыми они наделяют бактерии. Среди них - способность продуцировать экзотоксины и ферменты, устойчивость к лекарственным препаратам, синтез бактериоцинов.

    1.F- плазмиды - донорские функции, индуцируют деление (от fertility - плодовитость). Интегрированные F - плазмиды- Hfr- плазмиды (высокой частоты рекомбинаций).

    2.R- плазмиды (resistance) - устойчивость к лекарственным препаратам.

    3.Col- плазмиды - синтез колицинов (бактериоцинов)- факторов конкуренции близкородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов.

    4.Hly- плазмиды - синтез гемолизинов.

    5.Ent- плазмиды - синтез энтеротоксинов.

    6.Tox- плазмиды - токсинообразование.

    Близкородственные плазмиды не способны стабильно сосуществовать, что позволило объединить их по степени родства в Inc- группы (incompatibility- несовместимость).

    Биологическая роль плазмид многообразна, в том числе:

    Контроль генетического обмена бактерий;

    Контроль синтеза факторов патогенности;

    Совершенствование защиты бактерий.

    Бактерии для плазмид - среда обитания, плазмиды для них- переносимые между ними дополнительные геномы с наборами генов, благоприятствующих сохранению бактерий в природе.

    Мигрирующие генетические элементы - отдельные участки ДНК, способные определять свой перенос между хромосомами или хромосомой и плазмидой с помощью фермента рекомбинации транспозазы. Простейшим их типом являются инсерционные последовательности (IS- элементы ) или вставочные элементы, несущие только один ген транспозазы, с помощью которой IS- элементы могут встраиваться в различные участки хромосомы. Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, индукция мутаций. Величина IS- элементов не превышает 1500 пар оснований.

    Транспозоны (Tn- элементы) включают до 25 тысяч пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два Is- элемента. Каждый транспозон содержит гены, привносящие важные для бактерии характеристики, как и плазмиды (множественная устойчивость к антибиотикам, токсинообразование и т.д.). Транспозоны- самоинтегрирующиеся фрагменты ДНК, могут встраиваться и перемещаться среди хромосом, плазмид, умеренных фагов, т.е. обладают потенциальной способностью распространяться среди различных видов бактерий.