Микроворсинки функции и наличие в клетках. Микроворсинки: понятие, строение, значение. Клеточный состав ворсинок

Микроворсинки функции и наличие в клетках. Микроворсинки: понятие, строение, значение. Клеточный состав ворсинок
Микроворсинки функции и наличие в клетках. Микроворсинки: понятие, строение, значение. Клеточный состав ворсинок

Микроворсинки, специализированные выросты плазматической мембраны эпителиальных клеток у животных и человека. Длина М. 500-3000 нм, диаметр 50-100 нм. Количество М. в одной клетке достигает нескольких тыс. Иногда расположение их упорядочено, например, в исчерченных (щёточных) каёмках эпителиальных клеток тонкого кишечника (рис. ) М. находятся на расстоянии около 20 нм друг от друга. Служат для увеличения клеточной поверхности. Из М. состоят и кутикулы у позвоночных животных.

Щёточная каёмка эпителия тонкой кишки обезьяны: равномерное распределение микроворсинок (электронная микрофотограмма).

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Читайте также в БСЭ:

Микроглия
Микроглия, мезоглия (от микро... или мезо... и греч. glía - клей), мелкие округлые клетки в центральной нервной системе. Развиваются из клеток соединительной ткани и составляют ок...

Микроинтерферометр
Микроинтерферометр, прибор, применяемый для измерений неровностей на наружных поверхностях с направленными следами механической обработки, а также для определения толщины плёнок, величин...

Микроканонический ансамбль
Микроканонический ансамбль, статистический ансамбль для изолированных (не обменивающихся энергией с окружающими телами) макроскопических систем в постоянном объёме при постоянном числе ч...

Органеллы спец. назначения – это постоянно присутствующие и обязательные для отдельных клеток микроструктуры , выполняющие особые функции, которые обеспечивают специализацию ткани и органа . К ним относят: реснички, жгутики, микроворсинки, миофибриллы.

Реснички и жгутики – это специальные органеллы движения, встречающиеся в некоторых клетках различных организмов. Ресничка представляет собой цилиндрический вырост цитоплазмы. Внутри выроста располагается аксонема (осевая нить) , проксимальная часть реснички(базальное тело) погружена в цитоплазму. Систему микротрубочек реснички описывают по формуле – (9х2) + 2. Основной белок реснички- тубулин.

Тонофибриллы - тонкие белковые волокна, обеспечивающие сохранность формы в некоторых эпителиальных клетках.Тонофибриллы обеспечивают механическую прочность клеток.

Миофибриллы - это органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение. Служат для сокращений мышечных волокон. Миофибрилла - это нитевидная структура, состоящая из саркомеров. Каждый саркомер имеет длину около 2 мкм и содержит два типа белковых филаментов: тонкие микрофиламенты из актина и толстые филаменты из миозина. Границы между филаментами (Z-диски) состоят из особых белков, к которым крепятся ±концы актиновых филаментов. Миозиновые филаменты также крепятся к границам саркомера с помощью нитей из белка титина (тайтина). С актиновыми филаментами связаны вспомогательные белки - небулин и белки тропонин-тропомиозинового комплекса.

У человека толщина миофибрилл составляет 1-2 мкм, а их длина может достигать длины всей клетки (до нескольких сантиметров). Одна клетка содержит обычно несколько десятков миофибрилл, на их долю приходится до 2/3 сухой массы мышечных клеток.

Включения. Их классификация и морфо-функциональная характеристика.

Включения – это необязательные и непостоянные компоненты клетки, возникающие и исчезающие в зависимости от метаболического состояния клеток. Различают: трофические, секреторные, экскреторные, пигментные включения.

К трофическим относят капельки жиров., гликоген.

Секреторные вкл .- это округлые образования различных р-ров., содержащие БАВ.

Экскреторные вкл .- не содержат каких-либо ферментов. Это обычно продукты метаболизма, подлежащие удалению из кл.

Пигментные вкл.- могут быть экзогенными(каротин, пылевые частицы, красители) и эндогенными (гемоглобин, билирубин, меланин, липофусцин).

Ядро, его значение в жизнедеятельности кл. Основные компоненты ядра. Их структурно-функциональные характеристики. Ядерно-цитоплазматические отношения как показатель функционального состояния кл.

Ядро кл.- – это структура, обеспечивающая генетическую детерминацию, регуляцию белкового синтеза и выполнение других клеточных функций.


Структурные элементы ядра :1) хроматин; 2) ядрышко; 3) кариоплазма; 4) кариолемма.

Хроматин это вещество, хорошо воспринимающее краситель состоит из хроматиновых фибрилл, толщи­ной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. При подготовке клетки к делению в ядре происходят слирализация хроматиновых фи­брилл и превращение хроматина в хромосомы. После делания в Ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл Различают хроматин: ЭУХРОМАТИН – зоны полной деконденсации хромосом и их участков. Активные участки хромосом. ГЕТЕРОХРОМАТИН зоны конденсированного хроматина. Неактивные участки или целые хромосомы.ПОЛОВОЙ ХРОМАТИН – вторая неактивная Х хромосома в клетках женского организма.

По химическому строению хроматин состоит из:

1) дезоксирибонуклеиновой кислоты (ДНК);

2) белков;

3) рибонуклеиновой кислоты (РНК).

Ядрышко - сферическое образование (1-5 мкм в диаметре), хорошо воспринимающее основные кра­сители и располагающееся среди хроматина. Ядрышко не является самостоятельной структурой. Оно форми­руется только в интерфазе. В одном ядре содержится несколько ядрышек.

Микроскопически в ядрышке различают: 1) фибриллярный компонент (локализуется в цент­ральной части ядрышка и представляет собой нити рибонуклеопротеида); 2) гранулярный компонент (локализуется в перифе­рической части ядрышка и представляет собой Скопление субъединиц рибосом).Кириолемма – ядерная оболочка кот., отделяет содержимое ядра от цитоплазмы,обеспечивает регулируемый обмен веществ м/д ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Функции ядер соматических клеток :

1) хранение генетической информации, закодированной в молекулах ДНК;

2) репарация (восстановление) молекул ДНК повреждения с помощью специальных репаративных ферментов;

3)редупликация (удвоение) ДНК в синтетическом периоде интерфазы.

4) передача генетической информации дочерним клеткам во время митоза;

5) реализация генетической информации, закодиро­ванной в ДНК, для синтеза белка и небелковых мо­лекул: образование аппарата белкового синтеза (информационной, рибрсомальной и транспорт­ных РНК).

Функции ядер половых клеток:

1) хранение генетической информации;

2) передача генетической информации при слиянии женских и мужских половых кл.

В организме млекопитающих и человека различают следующие типы клеток:

1) часто делящиеся клетки клетки эпителия кишечника;

2) редко делящиеся клетки (клетки печени); .

3) неделящиеся клетки (нервные клетки). Жизненный цикл у этих клеточных типов различен. Клеточный цикл подразделяется на два основных

1) митоз, или период деления;

2) интерфазу - промежуток жизни клетки между дву­мя делениями.

Микроворсинки нередко путают с ресничками , однако они резко отличаются по строению и функциям. Реснички имеют базальное тело и цитоскелет из микротрубочек , способны к быстрым движениям (кроме видоизмененных неподвижных ресничек) и служат у крупных многоклеточных обычно для создания токов жидкости или восприятия раздражителей, а у одноклеточных и мелких многоклеточных животных также для передвижения. Микроворсинки не содержат микротрубочек и способны лишь к медленным изгибаниям (в кишечнике) либо неподвижны.

За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином - фимбрин, спектрин , виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Микроворсинки кишечника (не путать с многоклеточными ворсинками) во много раз увеличивают площадь поверхности всасывания. Кроме того. у позвоночных на их плазмалемме закреплены пищеварительные ферменты , обеспечивающие пристеночное пищеварение.

Микроворсинки внутреннего уха (стереоцилии) интересны тем, что образуют ряды с различной, но строго определенной в каждом ряду длиной. Вершины микроворсинок более короткого ряда соединены с более длинными микроворсинками соседнего ряда с помощью белков - протокадгеринов. Их отсутствие или разрушение может приводить к глухоте, так как они необходимы для открывания натриевых каналов на мембране волосковых клеток и, следовательно, для преобразования механической энергии звука в нервный импульс

Хотя микроворсинки сохраняются на волосковых клетках в течение всей жизни, каждая из них постоянно обновляется за счет тредмиллинга актиновых филаментов,

Ссылки

Атлас электронных микрофотографий (ПЭМ)

Врожденный слуховой аппарат на флексоэлектричестве


Wikimedia Foundation . 2010 .

Тонкая кишка является главным местом переваривания и всасывания пита­тельных веществ. Хотя общая ее длина составляет приблизительно 6 м, наличие ворсинок значительно увеличивает площадь переваривания и всасывания (рис. 6-8). Каждая ворсинка имеет центральный лимфатический капилляр, который прохо­дит в ее середине и соединяется с лимфатическими сосудами в подслизистом слое кишечника (рис. 6-9). Кроме того, в каждой ворсинке есть сплетение кровеносных капилляров, по которым оттекающая кровь, в конечном счете, поступает в ворот­ную вену. Помимо ворсинок в слизистой оболочке тонкой кишки имеются крипты, т. е. инвагинации, содержащие относительно недифференцированные клетки. Эти клетки восполняют слущенные клетки ворсинок, пролиферируя и мигрируя из

Рис. 6-8. Увеличение площади поверхности тонкой кишки за счет складок, ворсинок и микроворси­нок. Цифры показывают степень увеличения площади всасывания по сравнению с гладкой поверхно­стью. Складки, ворсинки и микроворсинки вместе увеличивают площадь всасывания в 600 раз. (По:

Yamada Т., Alpcrs D. H.,0wyang С., Powell D. W., Silverstein F. Е., eds. Textbook ot"Gastroenterology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 2: 2497.)

Рис. 6-9. Анатомия микрососудов ворсинок и центральный лимфати­ческий сосуд. (По: Lundgren О. Studies on blood flow distribution and countercurrent exchange in the small intestine. Acta Physiol. Scand. 303:1, 1967; YamadaT., Alpers D. H., OwyangC., Powcll D.W., Silver-stein F. E., eds. Textbook of Gastro-enterology, 2nd cd. Philadelphia: J. B. Lippincott, 1995; 2: 2497.)

крипт к верхушкам ворсинок (рис. 6-10). Хотя на ворсинках имеются и бокаловид­ные клетки и иммунные клетки, главными клетками ворсинок являются энтероци­ты. На апикальном участке своей мембраны каждый энтероцит покрыт микровор­синками, которые усиливают переваривание и увеличивают всасывательную по­верхность тонкой кишки. Энтероциты живут только 3-7 дней, затем они обновля­ются. По мере созревания в энтероциты недифференцированные клетки начинают вырабатывать различные ферменты, такие как дисахаридазы и пептидазы, необхо­димые для окончательного расщепления питательных веществ перед их всасыва­нием на апикальных микроворсинках. В этом процессе участвуют также многие рецепторы и транспортеры. Они существенны для всасывания моносахаридов, ами­нокислот, липидов. Энтероциты тесно соединены друг с другом, так что практи­чески вся абсорбция проходит в микроворсинках, а не через межклеточное про­странство. Концентрация ферментов и транспортеров больше в проксимальном отделе тонкой кишки (двенадцатиперстная и тощая кишка), чем в подвздошной кишке, однако специфические рецепторы для всасывания отдельных веществ, на­пример витамина B12, есть только в подвздошной кишке.

Рис. 6-10. Схема соотношений вор­синки-крипта в тонкой кишке. (По: Yamada Т., Alpers D. H., Owyang С., Powell D. W., Silverstein F. E., eds. Textbook of Gastrocnterology, 2nd ed. Philadelphia:

J. B. Lippincott, 1995; 2: 362.)







Микротрубочки выполняют в клетках еще и структурную роль: эти длинные, трубчатые, достаточно жесткие структуры образуют опорную систему клетки, являясь частью цитоскелета . Они способствуют определению формы клеток в процессе дифференцировки и поддержанию формы дифференцированных клеток; нередко они располагаются в зоне, непосредственно примыкающей к плазматической мембране. Животные клетки, в которых система микротрубочек повреждена, принимают сферическую форму. В растительных клетках расположение микротрубочек точно соответствует расположению целлюлозных волокон, отлагающихся при построении клеточной стенки; таким образом микротрубочки косвенно определяют форму клетки.

Микроворсинки

Микроворсинками называют пальцевидные выросты плазматической мембраны некоторых животных клеток. Иногда микроворсинки увеличивают площадь поверхности клетки в 25 раз, поэтому они особенно многочисленны на поверхности клеток всасывающего типа, а именно в эпителии тонкого кишечника и извитых канальцев нефронов. Это увеличение площади всасывающей поверхности способствует и лучшему перевариванию пищи в кишечнике, потому что некоторые пищеварительные ферменты находятся на поверхности клеток и связаны с ней.

Бахрома микроворсинок на эпителиальных клетках хорошо видна в световом микроскопе; это так называемая щеточная каемка эпителия.

В каждой микроворсинке содержатся пучки актиновых и миозиновых нитей. Актин и миозин - это белки мышц, участвующие в мышечном сокращении. В основании микроворсинок актиновые и миозиновые нити, связываясь с нитями соседних микроворсинок, образуют сложную сеть. Вся эта система в целом поддерживает микроворсинки в расправленном состоянии и позволяет им сохранять свою форму, обеспечивая в то же время и скольжение актиновых нитей вдоль миозиновых (наподобие того, как это происходит при мышечном сокращении).

Электронная микрофотография, на которой видны целлюлозные волокна в отдельных аюях клеточной стенки зеленой морской водоросли Chaetomorpha melagonium. Толщина целлюлозных микрофибрилл составляет 20 нм. Для получения контрастного изображения произведено напьиение сплавом платины с золотом.

Клеточные стенки

Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку, материал для построения которой секретирует сама находящаяся в ней живая клетка (протопласт). По своему химическому составу клеточные стенки растений отличаются от клеточных стенок прокариот и грибов.

Клеточная стенка , отлагающаяся во время деления клеток растения, называется первичной клеточной стенкой. Позже в результате утолщения она может превратиться во вторичную клеточную стенку. На рисунке воспроизведена электронная микрофотография, на которой можно видеть одну из ранних стадий этого процесса.

Строение клеточной стенки

Первичная клеточная стенка состоит из целлюлозных фибрилл, погруженных в матрикс, в состав которого входят другие полисахариды. Целлюлоза тоже представляет собой полисахарид. Она обладает высокой прочностью на разрыв, сравнимой с прочностью стали. Матрикс состоит из полисахаридов, которые для удобства описания делят обычно на пектины и гемицеллюлозы. Пектины - это кислые полисахариды с относительно высокой растворимостью. Срединная пластинка, скрепляющая стенки соседних клеток, состоит из клейких студнеобразных пектатов (солей пектина) магния и кальция.

Гемицеллюлозы - это смешанная группа полисахаридов, растворимых в щелочах. У гемицеллюлоз, как и у целлюлозы, молекулы имеют форму цепи, однако их цепи короче, менее упорядочены и сильнее разветвлены.

Клеточные стенки гидратированы: 60-70% их массы обычно составляет вода. По свободному пространству клеточной стенки вода перемещается беспрепятственно.

У некоторых клеток , например у клеток мезофилла листа, на всем протяжении их жизни имеется только первичная клеточная стенка. Однако у большинства клеток на внутреннюю поверхность первичной клеточной стенки (снаружи от плазматической мембраны) отлагаются дополнительные слои целлюлозы, т. е. возникает вторичная клеточная стенка. В любом слое вторичного утолщения целлюлозные волокна располагаются под одним и тем же углом, но в разных слоях этот угол различен, чем и обеспечивается еще большая прочность структуры. Такое расположение целлюлозных волокон показано на рисунке.

Некоторые клетки , такие, как трахеальные элементы ксилемы и клетки склеренхимы, претерпевают интенсивную лигнификацию (одревеснение). При этом все слои целлюлозы пропитываются лигнином - сложным полимерным веществом, не относящимся к полисахаридам. Клетки протоксилемы лигнифицируются лишь частично. В других случаях лигнификация бывает сплошной, если не считать так называемых поровых полей, т. е. тех участков в первичной клеточной стенке, через которые осуществляется контакт между соседними клетками при помощи группы плазмолемы.

Лигнин скрепляет целлюлозные волокна и удерживает их на месте. Он действует как очень твердый и жесткий матрикс, усиливающий прочность клеточных стенок на растяжение и в особенности на сжатие (предотвращает прогибы). Это главный опорный материал дерева. Он также предохраняет клетки от повреждения под действием физических и химических факторов. Вместе с целлюлозой, остающейся в клеточных стенках, лигнин придает древесине те особые свойства, которые делают ее незаменимым строительным материалом.