Влияние полярности дуги на плавление электродов. Полярность сварочных электродов - некоторые нюансы электрической дуговой сварки. Сварка на обратной полярности

Влияние полярности дуги на плавление электродов. Полярность сварочных электродов - некоторые нюансы электрической дуговой сварки. Сварка на обратной полярности
Влияние полярности дуги на плавление электродов. Полярность сварочных электродов - некоторые нюансы электрической дуговой сварки. Сварка на обратной полярности

Сварку металлов постоянным током можно проводить двумя режимами: с прямой полярностью и обратной. Прямая полярность при сварке – это когда к электроду подключается минус, к металлической заготовке плюс. При сварке током обратной полярности все наоборот, то есть, к стержню подключается плюс, к изделию минус.

При сварке постоянным током на кончике электрода образуется термическое пятно, которое обладает высокой температурой. В зависимости от того, какой полюс подключен к электроду, будет зависеть и температура на его кончике, а соответственно будет зависеть режим сварочного процесса. К примеру, если подключен к расходнику плюс, то на его конце образуется анодное пятно, температура которого равна 3900С. Если минус, то получается катодное пятно с температурой 3200С. Разница существенная.

Что это дает.

  • При сварке током прямой полярности основная температурная нагрузка ложится на металлическую заготовку. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.
  • При сварке током обратной полярности концентрация температуры происходит на кончике электрода. То есть, основной металл при этом нагревается меньше. Поэтому этот режим в основном используют при соединении заготовок с небольшой толщиной.

Необходимо добавить, что режим обратной полярности применяют также при стыковке высокоуглеродистых и легированных сталей, нержавейки. То есть, тех видов металлов, которые чувствительны к перегреву.

Внимание! Так как на анодном и катодном пятне температура разная, то от правильного подключения сварочного аппарата будет зависеть расход самого электрода. То есть, обратная полярность при сварке инвертором – это перерасход электродов.

В процессе сварки постоянным током необходимо добиться того, чтобы металл заготовок прогрелся хорошо, практически до состояния расплавленного. То есть, должна образоваться сварочная ванна. Именно прямая и обратная полярность режима сваривания влияет на качественное состояние ванны.

  • Если сила тока будут большой, а значит, и температура нагрева также будет высокой, то металл разогреется до такого состояния, что электрическая дуга будут просто его отталкивать. Ни о каком соединении здесь уже говорить не придется.
  • Если ток будут, наоборот, слишком мал, то металл не разогреется до необходимого состояния. И это тоже минус.

При прямой полярности внутри ванны будет создана среда, которой легко руководить электродом. Она растекается, поэтому одно движение стержня создает направленность сварного шва. При этом легко контролируется глубина сваривания.

Кстати, скорость движения электрода напрямую влияет на качество конечного результата. Чем скорость выше, тем меньше тепла поступает в зону сварки, тем меньше прогревается основной металл заготовок. Уменьшая скорость, увеличивается температура внутри сварочной ванны. То есть, металл хорошо прогревается. Поэтому опытные сварщики выставляют на инверторе ток больше необходимого. А вот качество сварного шва контролируют именно скоростью перемещения электрода.

Что касается самих электродов, то выбор полярности обусловлен материалом, из которого он изготовлен, или видом обмазки. К примеру, использование обратной полярности при сварке постоянным током, в которой применяется угольный электрод, приводит к быстрому расходу сварных стержней. Потому что при высоких температурах угольный электрод начинает разрушаться. Поэтому этот вид используется только при режиме прямой полярности. Чистый металлический стержень без покрытия, наоборот, хорошо заполняет сварочный шов при обратной полярности.

Глубина и ширина сварочного шва также зависит от используемого режима. Чем выше ток, тем происходит увеличение провара. То есть, увеличивается глубина сварного шва. Все дело в погонной энергии на дуге. По сути, это количество тепловой энергии, проходящей через единицу длины сварочного шва. Но увеличивать ток до бесконечности нельзя, даже в независимости от толщины свариваемых металлических заготовок. Потому что тепловая энергия создает давление на расплавленный металл, что вызывает его вытеснение. Конечный результат такой электросварки при повышенном токе – прожог сварочной ванны. Если говорить о влиянии прямой и обратной полярности при сварке инвертором, то большую глубину проплавки может обеспечить режим обратной полярности.

Некоторые особенности сваривания при прямой полярности

Что такое прямая полярность определено. Указаны некоторые качества сварных швов при проведении процесса соединения в режиме прямой полярности. Но остались некоторые тонкие моменты.

  • В сварочную ванну металл от электродов или присадочных материалов переносится большими каплями. Это, во-первых, большой разбрызг металла. Во-вторых, увеличение коэффициента проплавления.
  • При таком режиме электрическая дуга нестабильна.
  • С одной стороны снижение глубины провара, с противоположной снижение внедрения углерода в массу металла заготовки.
  • Правильный нагрев металла.
  • Меньший нагрев стержня электрода или присадочной проволоки, что позволяет сварщику использовать токи с более высоким значением.
  • При некоторых сварочных материалах наблюдается увеличение коэффициента наплавки. К примеру, при использовании плавящихся электродов в инертных и некоторых активных газах. Или при применении присадочных материалов, которые наносятся под флюсами некоторых типов, например, марки ОСЦ-45.
  • Кстати, прямая полярность влияет и на состав материала, оказавшегося в шве между двумя металлическими заготовками. Обычно в металле практически отсутствует углерод, но зато в большом количестве присутствует кремний и марганец.

Особенности сварки током обратной полярности

Сваривание тонких заготовок – процесс с повышенной трудностью, потому что постоянно присутствует опасность появления прожогов. Поэтому их соединяют режимом обратной полярности. Но есть и другие методы, чтобы снизить опасность.

  • Снизить потенциал тока, чтобы уменьшить температуру на заготовке.
  • Сварку лучше проводить прерывистым швом. К примеру, сделать небольшой участок в начале, затем переместиться в центр, после начать стыковку с противоположной стороны, далее начать варить промежуточные участки. В общем, схему можно менять. Таким способом можно избежать коробления металла, особенно если длина стыка больше 20 см. Чем больше сваренных отрезков, чем короче каждый участок, тем меньше процент коробления металла.
  • Очень тонкие металлические заготовки сваривают с периодическим прерыванием электрической дуги. То есть, электрод выдергивается из зоны сварки, затем тут же быстро снова поджигается, и процесс продолжается.
  • Если проводится сварка внахлест, то две заготовки должны быть герметично прижиматься друг к другу. Небольшой воздушный зазор приводит к прожогу верхней детали. Для создания плотного прилегания нужно использовать струбцины или любой груз.
  • При стыковочном соединении заготовок лучше минимизировать зазор межу деталями, а идеально, чтобы зазора не было бы вообще.
  • Для сварки очень тонких заготовок с неровными кромками под стык необходимо уложить материал, который бы хорошо забирал на себя тепло процесса. Обычно для этого используют медную пластину. Можно и стальную. В данном случае, чем больше толщина вспомогательного слоя, тем лучше.
  • Можно провести отбортовку кромок свариваемых изделий. Угол отбортовки - 180°.

5.1 Цель работы

Изучение влияния параметров режима сварки на процесс плавления элек­тродов, ознакомление с методикой экспериментального определения характе­ристик расплавления электродов.

Теоретическое введение

Тепло, вводимое сварочной дугой в электрод, затрачивается на нагрев и расплавление электродного стержня и электродного покрытия. Процесс плав­ления электродного стержня и переход расплавленного металла в сварочную ванну зависит от ряда факторов: величины, рода и полярности тока, состава электродного покрытия и стержня, положения сварного шва в пространстве и т.п. Свойства электрода, характеризующие производительность его расплавле­ния, оценивают коэффициентом расплавления α р, определяемым по формуле

где g p – масса расплавленного металла, г;

I – ток сварки, А;

t – время плавления электрода.

При сварке наблюдаются потери жидкого металла вследствие его окисле­ния воздухом и через шлак, а также в результате испарения и разбрызгивания за пределы сварочной ванны. Потери на угар и разбрызгивание оцениваются коэффициентом потерь

Потери на угар и разбрызгивание колеблются в довольно широких пределах в зависимости от различных факторов. Для ручной дуговой сварки коэф­фициент расплавления в зависимости от конкретной марки электрода составляет 8-15 г/А·ч, коэффициент потерь – 5-30 %; для автоматической сварки под слоем флюса – α р = 13-23 г/А·ч, ψ = 2-4 % .

Увеличение сварочного тока приводит к повышению температуры столба дуги и интенсивности расплавления электрода и, как следствие, к увеличению α р. При больших плотностях тока переход капель металла с электрода в шов может носить струйный характер, что уменьшает потери на разбрызгивание.

При сварке на обратной полярности производительность расплавления существенно выше, чем при сварке на переменном токе и при прямой полярно­сти. Это объясняется тем, что на аноде выделяется в 2-3 раза больше теплоты, чем на катоде, за счет бомбардировки анода быстрыми электронами, в то время, как на катоде затрачивается энергия на их эмиссию.

На величины α р и ψ оказывают влияние тип электрода и состав стержня, что определяет состав атмосферы столба дуги и, как следствие, эффективный потенциал ионизации. В свою очередь, изменение эффективного потенциала ионизации ведет к изменению температуры столба дуги в соответствии с эмпи­рической формулой, применимой для ручной дуговой сварки

T = 800U эф (5.3)

Увеличение температуры столба дуги ведет к увеличению количества обра­зующихся газов, повышает их давление в капле электродного металла и, в конечном итоге, может привести к усилению разбрызгивания.

Коэффициент α р существенно зависит от температуры нагрева электрод­ного стержня. Нагрев электродного стержня джоулевым теплом ускоряет его плавление в дуговом разряде и α р увеличивается, при этом величина ψ практи­чески не меняется. При автоматической и полуавтоматической сварке для уве­личения α р широко применяется сварка с увеличенным вылетом проволоки (расстоянием между токоподводящим мундштуком н изделием). Увеличение вылета ведет к увеличению сопротивления проволоки и, как следствие, повы­шению температуры ее нагрева. При ручной дуговой сварке непостоянство α р в процессе горения электродного стержня может привести к нарушению режима формирования шва, поэтому максимальная сила тока для каждого диаметра электрода конкретной марки строго ограничена. Равномерности плавления электрода способствует увеличение толщины электродного покрытия, т.к. оно не проводит тока, не нагревается джоулевым теплом и охлаждает стержень электрода.

Оборудование и материалы

1. Посты ручной дуговой сварки на постоянном и переменном токах, укомплектованные приборами для измерения тока сварки.

2. Технические весы с разновесом.

3. Секундомер.

4. Штангенциркуль и линейка.

5. Сварочные электроды МР-3 Æ4 мм.

6. Пластины из малоуглеродистой стали.

Порядок проведения работы

1. Очистить, замаркировать и взвесить пластины, предназначенные для наплавки.

2. Подготовить электроды, замаркировать, определить диаметр и началь­ную длину электродного стержня.

3. Для каждой марки электрода определить массу l погонного сантиметра электродного стержня, которая равна массе очищенного от обмазки электрод­ного стержня, деленной на его длину.

4. Произвести наплавку валика на пластину электродом по­стоянным током обратной полярности. В процессе наплавки фиксировать вре­мя горения дуги и силу тока (рекомендуемая сила тока для всех вариантов опы­тов – 120-200 А) с последующим занесением в таблицу 5.1.

5. После наплавки охладить, высушить, зачистить от шлака и взвесить пластину. Определить массу наплавленного металла и результат занести в таблицу 5.1.

6. Замерить длину оставшейся после наплавки части электрода и рассчи­тать массу расплавленного металла с последующим занесением в таблицу 5.1.

7. Вычислить характеристики расплавления электрода с последующим занесением в таблицу 5.1.

8. Опыт по п.4 повторить при измененных значениях силы тока 2 раза.

9. Опыт по п.4 повторить для прямой полярности и переменного тока.

Большинство современных сварочных аппаратов имеют в своей конструкции блок выпрямительных диодов, что, в свою очередь, обеспечивает постоянный сварочный ток. Для аппаратов, использующих в качестве сварочного материала проволоку (сварочных полуавтоматов) это является обязательным условием. Для аппаратов же, использующих для работы электроды это уже является опцией, позволяющей использовать практически любые марки электродов для проведения сварочных работ.


Классификация сварочной дуги по полярности постоянного тока:
а - прямая полярность; б - обратная полярность


При работе полуавтоматом необходимо обязательно соблюдать полярность подключения. Так, сварка обычной обмедненной проволокой в среде защитного газа производится током прямой полярности. То есть на изделие подается плюс, а на держак минус (прямая полярность при сварке). При таком подключении ток протекает от проволоки на изделие, в связи с чем нагрев изделия получается выше, нежели сварочной проволоки. И это закономерно. Свариваемые части имеют значительно большую площадь, соответственно, требуют большего нагрева для образования сварочной ванны. Проволока же, имеющая меньшую площадь достаточно легко плавится и в место сварки попадает уже в виде расплавленной капли. Протекающий ток, а он протекает именно от плюса к минусу, захватывает расплавившийся материал, опять же способствуя формированию качественной сварочной ванны.

Судя по комментариям посетителей нашего сайта, возникла небольшая путаница с тем, в каком все таки направлении течет ток в цепи. Давайте попытаемся внести ясность в этот вопрос!
Необходимо понимать, что "направление тока" в электротехнике - это больше условность, принятая для рисования схем. Традиционно, на схемах, принято рисовать от плюса к минусу, как будто движение тока происходит от плюса к минусу, хотя реальное движение носителей заряда в большинстве случаев происходит в обратном направлении! В случае, если проводником выступает металл (провод, электрод и т.п.), реальные носители заряда - электроны, летят от минуса к плюсу (т.к. электроны - отрицательно заряженные частицы). Если проводником выступает ионизированый газ или жидкость с ионами, в таком случае ионы летят в обе стороны.


При работе полуавтоматом без защитной среды газа, используется специальная порошковая (флюсовая) проволока. В этом случае обязательно меняется полярность подключения держака и «массы». То есть на массе «минус», а на держаке плюс (обратная полярность при сварке). Обусловлено это тем, что температура плавления флюса примерно одинакова с температурой плавления металла, однако для получения качественного шва необходимо чтобы флюс сгорел и образовал небольшое газообразное облако в среде которого и будет происходить сварочный процесс. Как уже отмечалось выше, ток течет от минуса к плюсу, поэтому и падение расплавленной капли металла будет несколько более низким, что обеспечит меньший прогрев свариваемого металла, поскольку охлаждение последнего не осуществляется средой защитного газа и формирование сварочной ванны будет примерно таким же, как и при сварке в среде газа.
Сварка цветных металлов, в частности алюминия, производится, как правило, специальным вольфрамовым электродом. В этом случае обычно используют прямую полярность при сварке - минус на электроде. Такой тип подключения позволяет получить большую температуру в зоне нагрева, что особенно критично для того же алюминия, поскольку первоначально необходимо «пробить» оксидную пленку, тем более, что температура плавления у последней гораздо выше, нежели самого металла.
Прямая полярность помимо всего прочего позволяет получить более концентрированную и узкую электрическую дугу, более глубокое проплавление металла, а, соответственно, более качественный шов и, что немаловажно, использовать меньший диаметр дорогостоящего вольфрамового электрода, а также снизить расход не менее дешевого газа.
При подключении вольфрамового электрода в обратной полярности при сварке - с плюсом на держаке - шов получается менее глубоким. Такой способ хорош при сваривании тонких пластин - в этом случае отсутствует опасность прожечь свариваемый материал. Однако ещё одним минусом является эффект «магнитного дутья». В этом случае образующаяся дуга получается блуждающей и шов получается менее красивым и герметичным. Подробности Категория: Сварка

В книге рассмотрены технологические свойства электро сварочных дуг при сварке низкоуглеродистыми электрода ми с различными покрытиями. Показано влияние энергетически: процессов у катода, анода и в столбе дуги па производительность расплавления и проплавляющее действие электродов, а также на перенос металла в дуге и устойчивость ее горения. Установлен характер изменения энергетического состояния отдельных зон дуги при внесении в нее различных веществ.

На основе теории распространения тепла при сварке разработаны способы расчета некоторых технологических характеристик электродов.

Книга рассчитана на инженеров, научных работников и аспирантов, интересующихся вопросами применения дугового разряда и его энергетическими особенностями.

Свойства электрической дуги должны оказывать решающее влияние на особенности процесса сварки электродами. Это связано с тем, что дуга является основным источником тепловой энергии. Другие возможные источники энергии (подогрев электрода током и тепло химических реакций при плавлении покрытия) имеют второстепенное значение. Это подтверждается следующими данными. При нагреве сварочным током стержней диаметром 4-5 мм из низкоуглеродистой стали при плотности тока до 20 ajмм2 в них выделяется лишь около 20% тепла, необходимого для плавления, причем основное количество тепла выделяется в конце расплавления электрода, когда значительно возрастает его омическое сопротивление из-за разогрева . Термический эффект химических реакций для наиболее распространенных промышленных электродов, определенный в работе с помощью специальной методики калориметрирования, не превышает ±8-9% мощности дуги.

Энергетические характеристики сварочных дуг зависят от типа покрытия электрода. Эта зависимость может быть установлена при одинаковом токе I по разнице в напряжении горения дуги Да, так как мощность дуги составляет /Да* Целесообразно сравнивать между собой величины так называемого номинального напряжения горения дуги (напряжение дуги, характерное для данного электрода при оптимальном режиме сварки).

Ниже приведены значения номинального напряжения горения дуги, полученные А. А. Ерохиным для низкоуглеродистой проволоки с различными тонкими покрытиями на постоянном токе прямой полярности (в в):
Без покрытия............................................................18

Тонкий слой жидкого стекла......................................17

Мел и жидкое стекло............................................... 15

Кварцевый песок и жидкое стекло.............................24

Каолин и жидкое стекло...........................................28
Очевидно, что сварочные дуги с более высоким номинальным напряжением при прочих равных условиях будут более мощными. Причина изменения мощности сварочной дуги при нанесении тех или иных покрытий кроется в изменении физических условий существования дугового разряда, вызываемом покрытиями.

В настоящее время характеристики конкретных электрических дуг при сварке различными электродами изучены чрезвычайно слабо. В определенной степени известны лишь явления в столбе дуги. В то же время почти не исследованы процессы в приэлектродных областях, имеющие большое значение для понимания технологической роли электрической дуги в сварочном процессе. Результаты исследовании несварочных электрических дуг дают некоторое представление о явлениях в приэлектродных областях сварочных дуг. Так, в связи с разнообразием типов электрических дуг физиками делались попытки приблизительно классифицировать их по явлениям па катоде.

А. Энгель считает, что самоподдерживающие электрические дуги целесообразно разделить на две группы: дуги, у которых катоды заметно испаряются при температурах, когда термоэлектронная эмиссия еще отсутствует (дуги с «холодным» катодом), и дуги, в которых катоды имеют температуру, достаточную для значительной термоэлектронной эмиссии (дуги с термокатодом).

Основу низкоуглеродистых сварочных электродов составляет железо, температура кипения которого равна примерно 2740° С. Имеющиеся в стали примеси могут приводить к снижению температуры кипения электрода или к избирательному кипению при температуре ниже температуры кипения железа. Например, марганец испаряется уже при 1900° С, потери его при сварке за счет испарения могут быть значительными. Поверхность капель на конце электрода почти всегда покрыта шлаками и окислами, температура кипения которых также может быть ниже температуры кипения железа (А!203-2250е С, Si02- 2230° С и т. д.). Температура железных катодов, покрытых шлаками и окислами в связи с их испарением в дуге и значительными затратами энергии на такое испарение, может не достигать температуры кипения железа

При сравнительно низкой температуре кипения железа и возможных примесей и шлаков заметная термоэлектронная эмиссия с поверхности капель при атмосферном давлении теоретически невозможна и поэтому сварочные дуги с плавящимися электродами должны быть отнесены по классификации Энгеля к дугам с «холодным» катодом. Следует отметить, что разделение дуг, предложенное Энгелем, не является строгим. Исследования показали, что благодаря локальным повышениям давления и температуры в катодной области в дугах с «холодным» катодом, также возможна термоэлектронная эмиссия.

В последнее время появились более тонкие феноменологические градации дуг. Так, В. Финкельнбург и Г. Меккер считают, что существуют дуги без катодного пятна, дуги с весьма сжатым и неподвижным катодным пятном и нестационарные туги с катодным пятном, находящимся в быстром и хаотическом движении. В нестационарных дугах очень мало время существования катодного пятна, которое при своем исчезновении сменяется вновь образующимся подобным пятном (или несколькими пятнами). Эти дуги по своим параметрам (ток, давление, состояние поверхности катода) наиболее близко пот ходят к сварочным дугам с плавящимся электродом.

В работе указывается, что на интенсивность движения шипа существенно влияет материал катода. Найдена связь между интенсивностью испарения катода и перемещением пятна. При плохо испаряющихся катодах пятно перемещается интенсивнее.

Дуга с катодным пятном при некоторых условиях может переходить в дугу без пятна. По мнению В. Вейцеля, в дуге без катодного пятна существенную роль играет термическая эмиссия электронов с катода. В дуге же с катодным пятном в контрагированной плазме у катода образуется облако положительных ионов, вырывающее из него электроны.

Дуга без пятна на переменном токе должна гореть без пиков напряжения в каждый полупериод из-за большой тепловой инерции электродов. В дуге с катодным пятном всегда наблюдается пик напряжения в начале каждого из полупериодов. Энергия, затрачиваемая на этот пик, расходуется на пере ориентацию облака положительных ионов и создание необходимых эмиссионных условий у катода.

Изучение явлений в катодной области, несомненно, имело бы важное значение и для сварочных дуг, однако для дуг с плавящимся электродом это затруднено, так как малая длина душ наличие втулочки из покрытия и перенос капель металла метают прямым наблюдениям в катодной области.

Несмотря на это, могут быть получены некоторые данные, убеждающие в существенном отличии процессов па катоде у сварочных дуг различных электродов. Например, анализируя сварку на переменном токе по осциллограммам напряжения, можно установить, что дуги различных электродов по характеру возбуждения в каждый полупериод и, следовательно, по характеристикам катодов отличаются друг от друга. В случае электродов ЦМ7, ОММ5 и ЦЦ1 пики напряжения при возбуждениях дуги существуют в каждом полупериоде, и по В. Вейнелю такие дуги могут быть отнесены к дугам с катодным пятом. Наибольшие пики напряжения наблюдаются у электродов ЦЦ1. Электроды с основным покрытием (УОНИ13, СМИ, > 112) при таких же режимах образуют дугу с пиком напряжения только в одном полупериоде (рис. 1).

Отличия имеются и в интенсивности блуждания пятна. Например, как показывает скоростная киносъемка, на электродах с меловым покрытием катодное пятно перемещается медленно, в то время как на электродах с покрытием из плавикового шпата оно быстро передвигается по поверхности капли.

Перемещение пятна непостоянно. Некоторое время оно может находиться в относительном покое и затем внезапно начать двигаться. Пятно может совершать быстрые вращательные движения вокруг капли. По кинокадрам, снятым со скоростью 5000 кадров в 1 сек, трудно судить, является ли перемещение пятен непрерывным или скачкообразным. В случае очень быстрого движения пятна создается впечатление, что оно гаснет и мгновенно вновь возникает в новом более благоприятном месте, которое может находиться даже с другой стороны капли Анодное пятно, подобно катодному, также может интенсивно блуждать. Таким образом, поведение активных пятен сварочной дуги соответствует по классификации В. Финкельнбурга и Г. Меккера третьему типу дуг с нестационарным катодным пятном.

Весьма вероятно, что природа перемещения пятна на жидком катоде при сварке близка к природе блуждания пятна на ртутном катоде, который также относится к катодам «холодного» типа. Катодное пятно на ртути состоит из отдельных ячеек. Перестройка этих ячеек (появление новых и исчезновение старых) приводит к быстрому хаотическому перемещению всего пятна. Размеры ячеек весьма малы. Плотность тока в одной ячейке составляет около 106 а/см2. Дуги с ртутных катодов благодаря ячеистому строению катода могут гореть одновременно с нескольких катодных пятен. Аналогичное явление в ряде случаев наблюдается при скоростной киносъемке сварки низкоуглеродистой проволокой при плотности тока более 18 а/мм2 па прямой полярности.

Таким образом, даже чисто феноменологическое рассмотрение показывает, что электрические дуги при сварке различными электродами имеют существенные отличия в протекающих в них физических процессах. Эти отличия и являются причинами изменения как мощности дуги, так и ее устойчивости при нанесении различных покрытий.

Отличия в физических и энергетических характеристиках луг неизбежно должны приводить к разным технологическим характеристикам электродов. Наблюдения показывают, что сварочные дуги, потребляющие большую мощность, характеризуйются более интенсивным блужданием активных пятен. Впервые па связь между номинальным напряжением дуги и ее устойчивостью обратил внимание Г. М. Тиходеев. Номинальное напряжение связано также со скоростью плавления электрода. Это было установлено И. Д. Давыденко и А. А. Ерохиным.

Несмотря на практическую важность этих фактов, взаимосвязи технологических характеристик электродов с особенностями электрических сварочных дуг посвящено сравнительно мало работ. Можно указать лишь на несколько работ в этом направлении.

Так, К- К- Хренов показал, что вещества с низким потенциалом ионизации, вводимые в дугу даже в небольших количествах, способствуют повышению ее устойчивости и позволяют производить сварку на переменном токе. В этой работе повышение устойчивости дуги связывалось с увеличением степени ионизации плазмы.

А. А. Ерохин установил, что коэффициент расплавления при прямой полярности увеличивается с ростом номинального напряжения дуги. При обратной полярности коэффициент расплавления в меньшей степени зависит от номинального напряжения. Этот результат исследовании А. Л. Ерохина, как будет показано ниже, имеет принципиальное значение.

В ряде работ было показано, что свойства сварочных дуг с плавящимся электродом и технологические характеристики процесса зависят от полярности при сварке, материала электродов, состояния их поверхности и атмосферы дуги. Однако в этих работах в большинстве случаев не делается попыток связать энергию дуги и технологические характеристики электродов.

Исследования в основном посвящены рассмотрению явлений с столбе дуги. Можно указать, например, на характерные в этом отношении монографии К. К. Хренова, A. Я. Броуна и Г. И. Погодина-Алексеева, Г. М. Тиходеева. Однако столб сварочной дуги обычно потребляет незначитечьную долю энергии и не может оказать существенного влияния на взаимен действие дуги и электродов. Значительно большее влияние на это взаимодействие должны оказать малоизученные приэлектродные области дуги.

На большое значение энергии, выделяемой в приэлектродных областях, при оценке теплового действия дуги па электрод обратил внимание Б. Е. Патон, который пишет: Лаши исследования и исследование, проведенное в последнее время в Институте электросварки Д. М. Бабкиным, показали, что основная тепловая энергия, идущая на нагрев и плавление электрода, выделяется в приэлектродной области».

Из работ, посвященных сварочной дуге, можно назвать лишь несколько, в которых плавление электрода исследуется в связи с характеристиками приэлектродных областей. Д. М. Бабкин рассмотрел действие приэлектродных областей мощной сварочной дуги под флюсом па плавление электродной проволоки. Хотя некоторые положения работы Д. М. Бабкина (равное значение электронного и ионного тока на катоде) встречают возражения, им впервые высказана важная идея о необходимости раздельного рассмотрения действия приэлектродных областей на плавление электрода и выполнены соответствующие расчеты. Японский исследователь С. Одзава сделал аналогичную попытку рассмотреть плавление различных электродов в связи с энергией в приэлектродных областях дуги.

Определенное отрицательное влияние на развитие исследований приэлектродных зон сварочной дуги оказало неверное положение К. Комптона о том, что для дуг высокого давления катодное падение напряжения численно равно потенциалу ионизации дугового газа. Это создавало иллюзию возможности расчета падения напряжения в катодной области сварочной дуги по величине потенциала ионизации паров металла электрода без проведения специальных измерений. На основе такой точки зрения, например, была сделана попытка создать модель сварочной дуги, в которой катодное падение напряжения различных дуг с плавящимся электродом из низкоуглеродпстой стали во всех случаях равнялось 8 в, что примерно соответствовало потенциалу ионизации паров железа В действительности катодное падение напряжения сварочном дуги может сильно отличаться в зависимости и от состояния поверхности электрода, типа покрытия или флюса, режима сварки, и такая модель не является обоснованном.

Очевидная связь между явлениями в дуге и технологическими характеристиками сварочных электродов создает определенные возможности по регулированию технологических свойств сварочных щектродов, которое можно осуществлять несколькими путями. Можно в определенных пределах стабилизировать процессы в дуге (улучшить устойчивость горения и уменьшить разбрызгивание) за счет соответствующего выбора электрических параметров источников тока и сварочной цепи. Принцип такого регулирования заключается в подборе правильных обратных связен в системе дуга - сварочная цепь - источник тока, что связано главным образом с установлением определенной формы вольт-амперной характеристики источника тока и его шнамических свойств.

Эти явления подробно исследованы Б. Е. Патоном. В. П. Никитиным, И. Я- Рабиновичем, В. К. Лебедевым и М. Н. Сидоренко, Д Б. Кейта и др. Этот способ можно назвать внешним способом регулирования синологических свойств.

Другой, значительно менее изученный способ регулирования технологических свойств электродов заключается в активном воздействии на энергетические процессы в самой дуге за счет введения в дугу различных веществ, иногда в весьма малых количествах.

Результатам исследования возможности такого регулирования технологических свойств электродов посвящена данная книга.