Неспаренный электрон. Химия Принцип действия ионизаторов воздуха

Неспаренный электрон. Химия Принцип действия ионизаторов воздуха

Магнитные характеристики атома

Электрон обладает собственным магнитным моментом , который квантуется по направлению параллельно или противоположно приложенному магнитному полю. В случае если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные . Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными . Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Οʜᴎ называются диамагнитными.

Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.

Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.

Энергия (потенциал) ионизации атома E i - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением

Х = Х + + е

Ее значения известны для атомов всœех элементов Периодической системы. К примеру, энергия ионизации атома водорода соответствует переходу электрона с 1s -подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

Рисунок 13

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всœегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. К примеру, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.

Последовательность отрыва электронов - обычна обратная последовательности заселœения орбиталей электронами в соответствии с принципом минимума энергии. При этом элементы, у которых заселяются d -орбитали, являются исключениями - в первую очередь они теряют не d -, а s -электроны.


  • - Энергия ионизации

    Магнитные характеристики атома Электрон обладает собственным магнитным моментом, который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины... [читать подробенее]


  • - Энергия ионизации

    Процесс ионизации выражается схемой: Э - n Эn+. Причем ионизация может происходить многократно. Ионизация атома определяет способность атома к отдаче электрона и процессу окисления. Это свойство (Еиониз.) определяет характер и прочность химической связи. Процесс... [читать подробенее]


  • - Энергия ионизации атомов.

    Характеристики атома. Запитання для самоперевірки Речовини, які за тих самих умов не розпадаються на іони і не проводять електричний струм, називаються неелектролітами. Електроліти і неелектроліти Відомо, що одні речовини в розчиненому чи розплавленому... [читать подробенее]



  • - Периодический характер изменения свойств атомов элементов: радиус, энергия ионизации, энергия сродства к электрону, относительная электроотрицательность.

    Для энергетической характеристики электрона в атоме необходимо указать значения четырех квантовых чисел: главного, побочного, магнитного и спинового квантовых чисел. Разберем их в отдельности. 1) Главное квантовое число “n” характеризует энергию электрона в атоме,...

  • Электрический ток в газах.

    Несамостоятельный электрический разряд. Опыт показывает, что две разноименно заряженные пластины, разделенные слоем воздуха, не разряжаются.

    Обычно вещество в газообразном состоянии является изолятором, так как атомы или молекулы, из которых оно состоит, содержат одинаковое число отрицательныхи положительных электрических зарядов и в целом нейтральны.

    Внесем в пространство между пластинами пламя спички или спиртовки (рис. 164).

    При этом электрометр начнет быстро разряжаться. Следовательно, воздух под действием пламени стал проводником. При вынесении пламени из пространства между пластинами разряд электрометра прекращается. Такой же результат можно получить, облучая пластины светом электрической дуги. Эти опыты доказывают, что газ может стать проводником электрического тока.

    Явление прохождения электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия, называется несамостоятельным электрическим разрядом.

    Термическая ионизация. Нагревание газа делает его проводником электрического тока, потому что часть атомов или молекул газа превращается в заряженные ионы.

    Для отрыва электрона от атома необходимо совершить работу против сил кулоновского притяжения между положительно заряженным ядром и отрицательным электроном. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома или молекулы, называется энергией связи.

    Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.

    Процесс возникновения свободных электронов и положительных ионов в результате столкновений атомов и молекул газа при высокой температуре называется термической ионизацией.

    Плазма. Газ, в котором значительная часть атомов или молекул ионизована, называется плазмой. Степень термической ионизации плазмы зависит от температуры. Например, при температуре 10 000 К ионизовано меньше 10 % общего числа атомов водорода, при температуре выше 20 000 К водород практически полностью ионизован.

    Электроны и ионы плазмы могут перемещаться под действием электрического поля. Таким образом, при низких температурах газ является изолятором, при высоких температурах превращается в плазму и становится проводником электрического тока.



    Фотоионизация. Энергия, необходимая для отрыва электрона от атома или молекулы, может быть передана светом. Ионизация атомов или молекул под действием света называется фотоионизацией.

    Самостоятельный электрический разряд . При увеличении напряженности электрического поля до некоторого определенного значения, зависящего от природы газа и его давления, в газе возникает электрический ток и без воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не зависящего от действия внешних ионизаторов, называется самостоятельным электрическим разрядом.

    В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при напряженности электрического поля, равной примерно

    Основной механизм ионизации газа при самостоятельном электрическом разряде - ионизация атомов и молекул вследствие ударов электрона.

    Ионизация электронным ударом. Ионизация электронным ударом становится возможной тогда, когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую энергию связи W электрона с атомом.

    Кинетическая энергия Wк электрона, приобретаемая под действием электрического поля напряженностью, равна работе сил электрического поля:

    где l - длина свободного пробега.

    Отсюда приближенное условие начала ионизации электронным ударом имеет вид

    Энергия связи электронов в атомах и молекулах обычно выражается в электронволътах (эВ). 1 эВ равен работе, которую совершает электрическое поле при перемещении электрона (или другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между которыми равно 1 В:

    Энергия ионизации атома водорода, например, равна 13,6 эВ.

    Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон при свободном пробеге настолько увеличивает кинетическую энергию, что при соударении с молекулой ионизует ее.

    Первый электрон, вызвавший ионизацию молекулы, и второй электрон, освобожденный в результате ионизации, под действием электрического поля приобретают ускорение в направлении от катода к аноду. Каждый из них при следующих соударениях освобождает еще по одному электрону и общее число свободных электронов становится равным четырем. Затем таким же образом оно увеличивается до 8, 16, 32, 64 и т. д. Число свободных электронов, движущихся от катода к аноду, нарастает лавинообразно до тех пор, пока они не достигнут анода (рис. 165).

    Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.

    Концентрация ионов в плазме по мере развития самостоятельного разряда увеличивается, а электрическое сопротивление разрядного промежутка уменьшается. Сила тока в цепи самостоятельного разряда обычно определяется лишь внутренним сопротивлением источника тока и электрическим сопротивлением других элементов цепи.

    Искровой разряд. Молния. Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то происходящий самостоятельный разряд называется искровым разрядом. Искровой разряд прекращается через короткий промежуток времени после начала разряда в результате значительного уменьшения напряжения. Примеры искрового разряда - искры, возникающие при расчесывании волос, разделении листов бумаги, разряде конденсатора.

    Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 000-20 000 А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. 166).

    При увеличении силы тока в канале молнии происходит нагревание плазмы до температуры свыше 10 000 К. Изменения давления в плазменном канале молнии при увеличении силы тока и прекращении разряда вызывают звуковые явления, называемые громом.

    Тлеющий разряд . При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).

    Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом (рис. 168).

    Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.

    Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках.

    Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.

    Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.

    Рекомбнация.

    Рекомбинация - процесс, обратный ионизации. Состоит в захвате ионом свободного электрона. Рекомбинация приводит к уменьшению заряда иона или к превращению иона в нейтральный атом или молекулу. Возможна также рекомбинация электрона и нейтрального атома (молекулы), приводящая к образованию отрицательного иона, и в более редких случаях - рекомбинация отрицательного иона с образованием двух- или трехкратно заряженного отрицательного иона. Вместо электрона в некоторых случаях могут выступать другие элементарные частицы, например мезоны, создавая мезоатомы или мезомолекулы. На ранних этапах развития вселенной происходила реакция рекомбинации водорода.

    Рекомбинация - это процесс, обратный разрыву химической связи. Рекомбинация связана с образованием ординарной ковалентной связи за счёт обобществления неспаренных электронов, принадлежащих разным частицам (атомам, свободным радикалам)

    Примеры рекомбинации:

    H + H → H2 + Q ;

    Cl + Cl → Cl2 + Q ;

    CH3 + CH3 → C2H6 + Q и др.


    Открытия радиоактивности подтвердило сложность строения не только атомов, а и их ядер. В 1903 г. Э. Резерфорд и Ф. Содди предложили теорию радиоактивного распада, которая коренным образом изменила старые взгляды на строение атомов. В соответствии с этой теорией, радиоактивные элементы самочинно распадаются с выпусканием α- или β-частинок и образованием атомов новых элементов, химически отличных от исходных. При этом сохраняется стабильность массы как исходных атомов, так и тех, которые образовались вследствие хода процесса распада. Э. Резерфорд в 1919 г. впервые исследовало искусственное преобразование ядер. Во время бомбардировки атомов азота с α-частинками он выделил ядра атомов водорода (протоны) и атомы нуклида кислорода. Такие преобразования называют ядерными реакциями, поскольку из ядер атомов одного элемента получаются ядра атомов других элементов. Ядерные реакции записывают с помощью уравнений. Так, рассмотренную выше ядерную реакцию можно записать так:

    Определения явления радиоактивности можно дать, использовав понятие об изотопах: радиоактивностью называется преобразование нестойких ядер атомов одного химического элемента на ядра атомов другого элемента, которое сопровождается выпусканием элементарных частичек. Радиоактивность, которую проявляют изотопы элементов, которые существуют в природе, называется естественной радиоактивностью. Скорость радиоактивных преобразований разная для разных изотопов. Она характеризуется постоянной радиоактивного распада, которая показывает, сколько атомов радиоактивного нуклида распадается за 1 с. Установлено, что количество атомов радиоактивного нуклида, которое распадается за единицу времени, пропорциональная общему количеству атомов этого нуклида и зависит от величины постоянной радиоактивного распада. Например, если на протяжении некоторого периода распалась половина общего количества атомов радиоактивного нуклида, то в следующий такой самый период распадется половина остатка, то есть вдвое меньше, чем за предыдущий период, и т.д.

    Продолжительность жизни радиоактивного нуклида характеризуют периодом полураспада, то есть таким промежутком времени, на протяжении которого распадается половина начального количества этого нуклида. Например, период полураспада Радона составляет 3,85 суток, Радия - 1620 лет, Урана - 4,5 миллиарда лет. Известные такие типы радиоактивных преобразований: α-распад, β-распад, спонтанный (самочинный) деление ядер. Эти типы радиоактивных преобразований сопровождаются выпусканием α-частичек, электронов, позитронов, γ-луч. В процессе α-распада ядро атома радиоактивного элемента выпускает ядро атома Гелия, вследствие чего заряд ядра атома исходного радиоактивного элемента уменьшается на две единицы, а массовое число - на четырех. Например, преобразования атома Радия на атом Радона можно записать уравнением

    Ядерную реакцию β-распада, который сопровождается выпусканием электронов, позитронов или увлечением орбитальных электронов, также можно записать уравнением

    где е - -электрон; hν - квант γ-излучения; ν o - антинейтрино (элементарная частичка, масса покоя которой и заряд равняются нулю).

    Возможность β-распада связана с тем, что, в соответствии с современными представлениями, нейтрон может превращаться при определенных условиях на протон, выпуская при этом электрон и антинейтрино. Протон и нейтрон - два состояния одной и той самой ядерной частички - нуклона. Этот процесс можно изобразить схемой

    Нейтрон -> Протон + Электрон + Антинейтрино

    В процессе β-распада атомов радиоактивного элемента один из нейтронов, который входит в состав ядра атома, выпускает электрон и антинейтрино, превращаясь на протон. В этом случае положительный заряд ядра увеличивается на единицу. Такой вид радиоактивного распада называется электронным - распадом (β - -распадом). Итак, если ядро атома радиоактивного элемента выпускает одну α-частицу, получается ядро атома нового элемента с протонным числом на две единицы меньшим, а при выпускании β-частички - ядро нового атома с протонным числом на единицу большим, чем у исходного. В этом и состоит суть закона смещения Содди-Фаянса. Ядра атомов некоторых нестабильных изотопов могут выпускать частички, которые имеют положительный заряд +1 и массу, близкую к массе электрона. Эта частичка называется позитроном. Итак, возможное преобразование протона на нейтрон согласно с схемой:

    Протон → Нейтрон + Позитрон + Нейтрино

    Преобразования протона на нейтрон наблюдается лишь в том случае, когда нестабильность ядра вызванная избыточным содержимым в нем протонов. Тогда один из протонов превращается в нейтрон, а позитрон и нейтрино, которые возникают при этом, вылетают за границы ядра; заряд ядра уменьшается на единицу. Такой тип радиоактивного распада называется позитронным -распадом (β+-распадом). Итак, вследствие β-розпаду ядра атома радиоактивного элемента получается атома элемента, смещенного на одно место вправо (β-розпад) или влево (β+-распад) от исходного радиоактивного элемента. Уменьшения заряда ядра радиоактивного атома на единицу может быть вызвано не только β+-распадом, а и электронным увлечением, вследствие чего один из электронов ближайшего к ядру электронного шара захватывается ядром. Этот электрон с одним из протонов ядра образовывает нейтрон: е - + р → n

    Теорию строения ядра атома разработали в 30-х годах XX ст. украинские ученые Д.Д. Иваненко и Е.М. Гапон, а также немецкий ученый В. Гейзенберг. В соответствии с этой теорией, ядра атомов состоят из положительно заряженных протонов и электронейтральных нейтронов. Относительные массы этих элементарных частичек почти одинаковые (масса протона 1,00728, масса нейтрона - 1,00866). Протоны и нейтроны (нуклоны) содержатся в ядре очень крепкими ядерными силами. Ядерные силы действуют только на очень маленьких расстояниях - порядка 10 -15 м.

    Энергия, которая выделяется во время образования ядра из протонов и нейтронов, называется энергией связи ядра и характеризует ее стабильность.

    

    ПРОМЕЖУТОЧНЫЕ ПРОДУКТЫ РАДИОЛИЗА

    При действии ионизирующего излучения на любую систему в результате ионизации и возбуждения образуются промежуточные продукты. К ним относятся электроны (термализованные и сольватированные, электроны недовозбуждения и др.), ионы (катион- и анион-радикалы, карбанионы, карбокатионы и др.), свободные радикалы и атомы, возбужденные частицы и т. п. Как правило, при обычных условиях эти продукты характеризуются высокой реакционной способностью и поэтому являются короткоживущими. Они быстро взаимодействуют с веществом и обусловливают образование конечных (стабильных) продуктов радиолиза.

    Возбужденные частицы. Возбуждение является одним из главных процессов взаимодействия ионизирующего излучения с веществом. В результате этого процесса образуются возбужденные частицы (молекулы, атомы и ионы). В них электрон находится на одном из электронных уровней, лежащих выше основного состояния, оставаясь связанным с остальной частью (т. е. дыркой) молекулы, атома или иона. Очевидно, при возбуждении частица сохраняется как таковая. Возбужденные частицы возникают также в некоторых вторичных процессах: при нейтрализации ионов, при передаче энергии и др. Они играют значительную роль при радиолизе различных систем (алифатических и особенно ароматических углеводородов, газов и др.).

    Виды возбужденных молекул . Возбужденные частицы содержат два неспаренных электрона на различных орбиталях. Спины этих электронов могут быть ориентированы одинаково (параллельны) или противоположно (антипараллельны). Такие возбужденные частицы являются соответственно триплетными и синглетными.

    При действии ионизирующего излучения на вещество возбужденные состояния возникают в результате следующих главных процессов:

    1) при непосредственном возбуждении молекул вещества излучением (первичное возбуждение),

    2) при нейтрализации ионов,

    3) при передаче энергии от возбужденных молекул матрицы (или растворителя) молекулам добавки (или растворенного вещества)

    4) при взаимодействии молекул добавки или растворенного вещества с электронами недовозбуждения..

    Ионы. В радиационной химии важную роль играют процессы ионизации. Как правило, на них расходуется более половины энергии ионизирующего излучения, поглощенной веществом.

    К настоящему времени преимущественно с помощью методов фотоэлектронной спектроскопии и масс-спектрометрии накоплен обширный материал об особенностях процессов ионизации, об электронной структуре положительных ионов, их устойчивости, путях исчезновения и т. п.

    В процессе ионизации образуются положительные ионы. Различают прямую ионизацию и автоионизацию. Прямая ионизация изображается следующим общим уравнением (М – молекула облучаемого вещества):


    Ионы М + обычно называют материнскими положительными ионами. К их числу принадлежат, например, Н 2 0 + , NH 3 и СН 3 ОН + , возникающие при радиолизе соответственно воды, аммиака и метанола.

    Электроны . Как уже упоминалось, в процессах ионизации вместе с положительными ионами образуются вторичные электроны. Эти электроны, израсходовав свою энергию в различных процессах (ионизация, возбуждение, дипольная релаксация, возбуждение молекулярных колебаний и др.), становятся термализованными. Последние принимают участие в разнообразных химических и физико-химических процессах, тип которых часто зависит от природы среды. Подчеркнем также, что в некоторых химических и физико-химических процессах (возбуждение молекул добавки, реакции захвата и др.) при определенных условиях участвуют электроны недовозбуждения.

    Сольватированные электроны. В жидкостях, нереакционноспособных или малореакционноспособных относительно электронов (вода, спирты, аммиак, амины, эфиры, углеводороды и др.), электроны после замедления захватываются средой, становясь сольватированными (в воде – гидратированными). Не исключено, что захват начинается, когда электрон еще обладает некоторой избыточной энергией (менее 1 эВ). Процессы сольватации зависят от природы растворителя и заметно различаются, например, для полярных и неполярных жидкостей.

    Свободные радикалы. При радиолизе почти любой системы в качестве промежуточных продуктов возникают свободные радикалы. К ним относятся атомы, молекулы и ионы, которые имеют один или более неспаренных электронов, способных образовывать химические связи.

    Наличие неспаренного электрона обычно указывается точкой в химической формуле свободного радикала (чаще всего над атомом с таким электроном). Например, метильный свободный радикал – это СН 3 - Точки, как правило, не ставятся в случае простых свободных радикалов (Н, С1, ОН и т. п.). Нередко слово «свободный» опускают, и эти частицы называют просто радикалами. Радикалы, имеющие заряд, называются ион-радикалами. Если заряд отрицательный, то это анион-радикал; если же заряд положительный, то это катион-радикал. Очевидно, сольватированный электрон можно считать простейшим анион-радикалом.

    При радиолизе предшественниками свободных радикалов являются ионы и возбужденные молекулы. При этом главные процессы, приводящие к их образованию, следующие:

    1) ионно-молекулярные реакции с участием ион-радикалов и электронейтральных молекул

    2) фрагментация положительного ион-радикала с образованием свободного радикала и иона с четным числом спаренных электронов

    3) простое или диссоциативное присоединение электрона к электронейтральной молекуле или иону со спаренными электронами;

    4) распад возбужденной молекулы на два свободных радикала (реакции типа);

    5) реакции возбужденных частиц с другими молекулами (например, реакции с переносом заряда или атома водорода).

    Как уже говорилось, общая электронная пара, осуществляющая ковалентную связь, может образоваться за счет неспаренных электронов, имеющихся в невозбуждеиных взаимодействующих атомах. Это происходит, например, при образовании таких молекул, как . Здесь каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара - возникает ковалентная связь.

    В невозбужденном атоме азота имеются три неспаренных электрона:

    Следовательно, за счет неспаренных электронов атом азота может участвовать в образовании трех ковалентных связей. Это и происходит, например, в молекулах или , в которых ковалентность азота равна 3.

    Однако число ковалентных связей может быть и больше числа имеющихся у невозбужденного атома иеспаренных электронов. Так, в нормальном состоянии внешний электронный слой атома углерода имеет структуру, которая изображается схемой:

    За счет имеющихся неспаренных электронов атом углерода может образовать две ковалентные связи. Между тем для углерода характерны соединения, в которых каждый его атом связан с соседними атомами четырьмя ковалентными связями (например, и т. д.). Это оказывается возможным благодаря тому, что при затрате некоторой энергии можно один из имеющихся в атоме -электронов перевести на подуровень в результате атом переходит в возбужденное состояние, а число неспаренных электронов возрастает. Такой процесс возбуждения, сопровождающийся «распариванием» электронов, может быть представлен следующей схемой, в которой возбужденное состояние отмечено звездочкой у символа элемента:

    Теперь во внешнем электронном слое атома углерода находятся четыре неспаренных электрона; следовательно, возбужденный атом углерода может участвовать в образовании четырех ковалентных связей. При этом увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на перевод атома в возбужденное состояние.

    Если возбуждение атома, приводящее к увеличению числа неспаренных электронов, связано с очень большими затратами энергии, то эти затраты не компенсируются энергией образования новый связей; тогда такой процесс в целом оказывается энергетически невыгодным. Так, атомы кислорода и фтора не имеют свободных орбиталей во внешнем электронном слое:

    Здесь возрастание числа неспаренных электронов возможно только путем перевода одного из электронов на следующий энергетический уровень, т. е. в состояние . Однако такой переход сопряжен с очень большой затратой энергии, которая не покрывается энергией, выделяющейся при возникновении новых связей. Поэтому за счет неспаренных электронов атом кислорода может образовать не больше двух ковалентных связей, а атом фтора - только одну. Действительно, для этих элементов характерна постоянная ковалентность, равная двум для кислорода и единице - для фтора.

    Атомы элементов третьего и последующих периодов имеют во внешнем электронном слое -подуровень, на который при возбуждении могут переходить s- и р-электроны внешнего слоя. Поэтому здесь появляются дополнительные возможности увеличения числа неспаренных электронов. Так, атом хлора, обладающий в невозбужденном состоянии одним неспаренным электроном,

    может быть переведен, при затрате некоторой энергии, в возбужденные состояния , характеризующиеся тремя, пятью или семью неспаренными электронами;

    Поэтому, в отличие от атома фтора, атом хлора может участвовать в образовании не только одной, но также трех, пяти или семи ковалентных связей. Так, в хлористой кислоте ковалентность хлора равна трем, в хлорноватой кислоте - пяти, а в хлорной кислоте - семи. Аналогично атом серы, также обладающий незанятым -подуровнем, может переходить в возбужденные состояния с четырьмя или шестью неспаренными электронами и участвовать, следовательно, в образовании не только двух, как у кислорода, но также четырех или шести ковалентных связей. Этим можно объяснить существование соединений, в которых сера проявляет ковалентность, равную четырем или шести .

    Во многих случаях ковалентные связи возникают и за счет спаренных электронов, имеющихся во внешнем электронном поле атома. Рассмотрим, например, электронную структуру молекулы аммиака:

    Здесь точками обозначены электроны, первоначально принадлежавшие атому азота, а крестиками - принадлежавшие атомам водорода. Из восьми внешних электронов атома азота шесть образуют три ковалентные связи и являются общими для атома азота и атомов водорода. Но два электрона принадлежат только азоту к образуют неподеленную электронную пару. Такая пара электронов тоже может участвовать в образовании ковалентной связи с другим атомом, если во внешнем электронном слое этого атома есть свободная орбиталь. Незаполненная -орбиталь имеется, например, у нона водорода , вообще лишенного электронов:

    Поэтому при взаимодействии молекулы с ионом водорода между ними возникает ковалентная связь; неподеленная пара электронов атома азота становится общей для двух атомов, в результате чего образуется ион аммония :

    Здесь ковалентная связь возникла за счет пары электронов, (электронной пары), и свободной орбитали другого атома (акцептора электронной пары) первоначально принадлежавшей одному атому (донору электронной пары).

    Такой способ образования ковалентной связи называется донорно-акцепторным. В рассмотренном примере донором электронной пары служит атом азота, а акцептором - атом водорода.

    Опытом установлено, что четыре связи в ионе аммония во всех отношениях равноценны. Из этого следует, что связь, образованная донорно-акцепторным способом, не отличается по своим свойствам от ковалентной связи, создаваемой за счет неспаренных электронов взаимодействующих атомов.

    Другим примером молекулы, в которой имеются связи, образованные донорно-акцепторным способом, может служить молекула оксида азота .

    Раньше структурную формулу этого соединения изображали следующим сбразом:

    Согласно этой формуле центральный атом азота соединен с соседними атомами пятью ковалентными связями, так что в его внешнем электронном слое находятся десять электронов (пять электронных пар). Но такой вывод противоречит электронной структуре атома азота, поскольку его наружный L-слой содержит всего четыре орбитали (одну s- и три р-орбитали) и не может вместить более восьми электронов. Поэтому приведенную структурную формулу нельзя признать правильной.

    Рассмотрим электронную структуру оксида азота , причем электроны отдельных атомов будем попеременно обозначать точками или крестиками. Атом кислорода, имеющий два неспаренных электрона, образует две ковалентных связи с центральным атомом азота:

    За счет неспаренного электрона, оставшегося у центрального атома азота, последний образует ковалентную связь со вторым атомом азота:

    Таким образом, внешние электронные слои атома кислорода и центрального атома азота оказываются заполненными: здесь образуются устойчивые восьмиэлектронные конфигурации. Но во внешнем электронном слое крайнего атома азота размещено только шесть электронов; этот атом может, следовательно, быть акцептором еще одной электронной пары. Соседний же с ним центральный атом азота обладает неподеленной электронной парой и может выступать в качестве донора.

    Это приводит к образованию по донорно-акцепторному способу еще одной ковалентной связи между атомами азота:

    Теперь каждый из трех атомов, составляющих молекулу , обладает устойчивой восьмиэлектронной структурой внешнего слоя. Если ковалентную связь, образованную донорно-акцепторным способом, обозначить, как это принято, стрелкой, направленной от атома-донора к атому-акцептору, то структурную формулу оксида азота (I) можно представить следующим образом:

    Таким образом, в оксиде азота ковалентность центрального атома азота равна четырем, а крайнего - двум.

    Рассмотренные примеры показывают, что атомы обладают разнообразными возможностями для образования ковалентных связей. Последние могут создаваться и за счет неспаренных электронов невозбужденного атома, и за счет неспаренных электронов, появляющихся в результате возбуждения атома («распаривания» электронных пар), и, наконец, по донорно-акцепторному способу. Тем не менее, общее число ковалентных связей, которые способен образовать данный атом, ограничено. Оно определяется общим числом валентных орбиталей, т. е. тех орбиталей, использование которых для образования ковалентных связей оказывается энергетически выгодным. Квантово-механический расчет показывает, что к подобным орбиталям принадлежат s- и р-орбитали внешнего электронного слоя и -орбитали предшествующего слоя; в некоторых случаях, как мы видели на примерах атомов хлора и серы, в качестве валентных орбиталей могут использоваться и -орбитали внешнего слоя.

    Атомы всех элементов пторого периода имеют во внешнем электронном слое четыре орбитали при отсутствии -орбиталей в предыдущем слое. Следовательно, на валентных орбиталях этих атомов может разместиться не более восьми электронов. Это означает, что максимальная ковалентность элементов второго периода равна четырем.

    Атомы элементов третьего и последующих периодов могут использовать для образования ковалентных связей не только s- и , но также и -орбитали. Известны соединения -элементов, в которых в образовании ковалентных связей участвуют s- и р-орбитали внешнего электронного слоя и все пять -орбиталей предшествующего слоя; в подобных случаях ковалентность соответствующего элемента достигает девяти.

    Способность атомов участвовать в образовании ограниченного числа ковалентных связей получила название насыщаемости ковалентной связи.