Круговорот веществ в природе. Круговорот биологический. Роль живых организмов в биологическом круговороте Какие организмы участвуют в биологическом круговороте веществ

Круговорот веществ в природе. Круговорот биологический. Роль живых организмов в биологическом круговороте Какие организмы участвуют в биологическом круговороте веществ
Круговорот веществ в природе. Круговорот биологический. Роль живых организмов в биологическом круговороте Какие организмы участвуют в биологическом круговороте веществ

Длительное существование жизни на Земле возможно благодаря постоянному круговороту веществ в биосфере. Все элементы, которые есть на планете, находятся в ограниченном количестве. Использование всех запасов привело бы к исчезновению всего живого. Поэтому в природе существуют механизмы, обеспечивающие перемещение химических соединений из живого к неживой природе и обратно.

Виды круговоротов веществ

Неоднократное использование существующих элементов способствует постоянству жизненных процессов при достаточном количестве энергетических ресурсов. Главный источник энергии, обеспечивающий круговорот веществ в биосфере - Солнце.

Выделяют три круговорота: геологический, биогеохимический и антропогенный (появился после возникновения человечества).

Геологический

Геологический или большой круговорот веществ функционирует благодаря внешним и внутренним геологическим процессам.

Эндогенные (глубинные) процессы происходят под воздействием внутренней энергии планеты. Ее источником служит радиоактивность, а также ряд биохимических реакций при формировании минералов и др. К глубинным процессам относят: перемещение земной коры, землетрясения, возникновение магматических расплавов, преобразования твердых пород.

Экзогенные процессы вызваны влиянием солнечной энергии. Основные из них: разрушение и изменение минеральных и органических пород, перенос этих остатков на другие участки земли, формирование осадочных пород. Экзогенные процессы также включают деятельность живой природы и человека.

Континенты, впадины океанического дна - результат влияния эндогенных факторов, а незначительные изменения существующего рельефа сформировались под действием экзогенных процессов (холмы, овраги, дюны). По сути, деятельность эндогенных и экзогенных факторов направлена друг на друга. Эндогенные отвечают за создание крупных форм рельефа, а экзогенные сглаживают их.

Силикатный расплав земной коры (магма) после выветривания переходит в осадочные породы. Проходя через подвижныеслои земной коры, они опускаются вглубь земного шара, где плавятся и обращаются в магму. Она снова извергается на поверхность и, после застывания, превращается в магматические породы.

Так, большой круговорот обеспечивает постоянный обмен вещества между биосферой и глубинами Земли.

Биохимический

Биогеохимический или малый круговорот осуществляется благодаря взаимодействию всего живого. Отличие от геологического состоит в том, что малый ограничен границами биосферы.


Благодаря солнечной энергии здесь идет важный процесс - фотосинтез. При этом органические вещества продуцируются автотрофами, путем синтеза из неорганических. Далее они поглощаются гетеротрофами. После, отмершие тела животных и растений минерализуются (превращаются в неорганические продукты). Полученные неорганические вещества снова используются автотрофными организмами.

Малый круговорот веществ делится на две составляющие:

  • Резервный фонд - та доля веществ, что еще не используется живыми особями;
  • обменный фонд - небольшая доля вещества, задействованная в обменных процессах.

Резервный фонд делится на 2 вида:

  • Газового типа - это резервный фонд воздушной и водной среды (задействованы следующие элементы: C, O, N);
  • осадочного типа — резервный фонд, что находится в твердой оболочке земли (задействованы следующие элементы: P, Ca, Fe).

Интенсивные обменные процессы возможны при достаточном поступлении воды и оптимальном температурном режиме. Поэтому в тропических широтах круговорот протекает быстрее, чем в северных.

Какую функцию выполняет круговорот веществ в биосфере?

Единство биосферы поддерживается круговоротом вещества и энергии. Постоянное их взаимодействие поддерживает жизнь на всей планете. Углерод - один из незаменимых элементов живых существ. Круговорот углерода поддерживается за счет деятельности представителей растительного мира.

Углерод вступает в круговорот веществ в биосфере и завершает его в форме углекислого газа. Во время фотосинтеза из атмосферы поглощается диоксид углерода, который превращается фотосинтезирующими организмами в углеводы. Назад возвращается CO 2 в процессе дыхания.

Азот - важный элемент, структурная часть ДНК, АТФ, белков. Он в большей мере представлен молекулярным азотом, и в таком виде не усваивается растениями. Круговороту азота способствуют бактерии и цианобактерии. Они могут переводить молекулы N в соединения, которые доступны для растений. После гибели органика поддается действию сапрогенных бактерий и расщепляется до аммиака. Часть которого подымается в верхние слои атмосферы и вместе с диоксидом углерода удерживает тепло планеты.

Функция и значение живых организмов


Все живое участвует в круговороте веществ, при этом усваивая одни вещества и выделяя другие. Существует ряд функций, которые выполняют живые организмы.

  1. Энергетическая
  2. Газовая
  3. Концетрационная
  4. Окислительно-востановительная
  5. Деструктивная
  6. Транспортная
  7. Средообразующая

Роль редуцентов в круговороте веществ

Редуценты в процессе круговорота веществ возвращают минералы и водные ресурсы в почву, при этом они становятся доступными для автотрофных организмов. Таким образом, вся живая природа не может существовать без редуцентов. Типичными представителями редуцентов являются грибы и бактерии.

Значение бактерий

Бактерии в круговороте веществ в биосфере играют огромную роль. Значимость микроорганизмов определяется, главным образом, их широкой распространённостью, быстрыми обменными процессами.

Бактерии разлагают органические соединения отмерших растений и освобождают в биосферу углерод. Также бактерии способны осуществлять химические реакции, недоступные для других живых существ (азотфиксирующие бактерии).

Какова роль грибов в круговороте веществ в биосфере?

Они превращают органические соединения в неорганические, которые становятся источником питания для растений. Также некоторые грибы участвуют в почвообразовании. Накопившаяся органика в теле гриба после его отмирания превращается в перегной.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: дать понятие о круговороте веществ, взаимосвязи веществ в биосфере, соответствие единым законам природы.

Задачи урока:

  1. Расширить знания о круговороте веществ.
  2. Показать перемещение веществ в биосфере.
  3. Показать роль круговорота веществ в биосфере.

Оборудование: таблицы “Границы биосферы и плотность жизни в ней”, схема круговорота веществ, ПК, проектор, презентация.

План урока.

I. Постановка проблемного вопроса.

II. Проверка знаний.

III. Новый материал.

3.1. Проблемный вопрос.

3.2. Определение биосферы по В.И. Вернадскому.

3.3. Характеристика биосферы.

3.4. Слайд 4. Роль живых организмов в биосфере.

3.5. Круговорот веществ в экосистеме.

IV. Слайд 8. Работа со схемой участвуют в круговороте.

V.Слайд 9. Работа со схемой круговорот воды.

VI. Слайд 10. Работа со схемой круговорот кислорода.

VII. Слайд 12. Работа со схемой круговорот углерода.

VIII. Слайд 13. Круговорот азота.

IX. Слайд 14. Круговорот серы.

Х.Слайд15. Круговорот фосфора.

XI. Запись вывода по теме урока.

Ход урока

I. Организационный момент. Настрой класса на работу.

II. Проверка знаний.

Выполнение теста по вариантам. Тесты распечатаны.

Вариант 1

1. Наиболее постоянным фактором, влияющим на атмосферу, является:

а) давление б) прозрачность в) газовый состав г) еемпература

2. К функциям биосферы, обусловленным процессами фотосинтеза, можно отнести:

а) газовую б) окислительно-восстановительную в) концентрационную

г) все перечисленные функции д) газовую и окислительно-восстановительную

3. Весь кислород атмосферы образован благодаря деятельности:

а) цианобактерий сине-зелёных водорослей б) гетеротрофных организмов в) колониальных простейших в) автотрофных организмов

4. В преобразовании биосферы главную роль играют:

а) живые организмы б) биоритмы

в) круговорот минеральных веществ в) процессы саморегуляции.

Вариант 2

1. Жизнь можно обнаружить:

а) любой точке биосферы

б) Любой точке Земли

в) любой точке биосферы

г) любой точке биосферы, кроме Антарктиды и Арктики

д) в биосфере происходит только геологическая эволюция

2. Приток энергии в биосферу извне необходим потому, что:

а) углеводы, образовавшиеся в растении, служат источником энергии для других организмов

б) в организмах происходят окислительные процессы

в) организмы разрушают остатки биомассы

г) ни один вид организмов не создаёт запасов энергии

3. Выберите основные факторы среды, от которых зависит процветание организмов в океане:

а) доступность воды б) количество осадков

в) прозрачность среды г) рH среды

д) солёность воды е) скорость испарения воды

ж) концентрация углекислого газа

4. Биосфера – глобальная экосистема, структурными компонентами которой являются:

а) классы и отделы растений б) популяции

в) биогеоценозы г) классы и типы.

III. Новый материал.

3.1. Проблемный вопрос

Вспомните из химии закон сохранения веществ. Как этот закон может быть связан с биосферой?

3.2. Определение биосферы

Биосфера, по В.И. Вернадскому, – это общепланетарная оболочка, та область Земли, где существует или существовала жизнь и которая подвергается или подвергалась ее воздействию. Биосфера охватывает всю поверхность суши, моря и океаны, а также ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов.

В. И. Вернадский
(1863-1945)

Выдающийся русский ученый
Академик, основоположник науки геохимии
Создал учение о биосфере Земли.

3.3. Характеристика биосферы

Биосфера охватывает всю поверхность суши, моря и океаны, а также ту часть недр Земли, где находятся породы, созданные деятельностью живых организмов. В атмосфере верхние границы жизни определяются озоновым экраном – тонким слоем газа озона на высоте 16–20 км. Он задерживает губительные ультрафиолетовые лучи солнца. Океан насыщен жизнью целиком, до дна самых глубоких впадин в 10–11 км. В глубину твердой части Земли активная жизнь проникает местами до 3 км (бактерии в нефтяных месторождениях). Результаты жизнедеятельности организмов в виде осадочных пород прослеживаются еще глубже.

Размножение, рост, обмен веществ и активность живых организмов за миллиарды лет полностью преобразовали эту часть нашей планеты.

Всю массу организмов всех видов В.И. Вернадский назвал живым веществом Земли.

В химический состав живого вещества входят те же самые атомы, которые составляют неживую природу, но в ином соотношении. В ходе обмена веществ живые существа постоянно перераспределяют химические элементы в природе. Таким образом, меняется химизм биосферы.

В.И. Вернадский писал, что на земной поверхности нет химической силы более постоянно действующей, а потому и более могущественной по своим последствиям, чем живые организмы, взятые в целом. За миллиарды лет фотосинтезирующие организмы (рис. 1) связали и превратили в химическую работу огромное количество солнечной энергии. Часть ее запасов в ходе геологической истории накопилась в виде залежей угля и других ископаемых органических веществ – нефти, торфа и др.

Рис. 1. Первые растения суши (400 млн. лет назад)

Слайд 4.

3.4. Роль живых организмов в биосфере

Живые организмы создают в биосфере круговороты важнейших биогенных элементов , которые попеременно переходят из живого вещества в неорганическую материю. Эти циклы делят на две основные группы: круговороты газов и осадочные круговороты. В первом случае главный поставщик элементов – атмосфера (углерод, кислород, азот), во втором – горные осадочные породы (фосфор, сера и др.).

Благодаря живым существам возникли многие горные породы на Земле. Организмы обладают способностью избирательно поглощать и накапливать в себе отдельные элементы в гораздо большем количестве, чем они есть в окружающей среде.

Совершая гигантский биологический круговорот веществ в биосфере, жизнь поддерживает стабильные условия для своего существования и существования в ней человека.

Живые организмы играют большую роль в разрушении и выветривании горных пород на суше. Они – главные разрушители мертвого органического вещества.

В. В. Докучаев
(1846 - 1903)
Основоположник современного почвоведения,
основанного на идее глубокой взаимосвязи живой и неживой природы

Таким образом, за период своего существования жизнь преобразовала атмосферу Земли, состав вод океана, создала озоновый экран, почвы, многие горные породы. Изменились условия выветривания пород, большую роль стал играть микроклимат, создаваемый растительностью, изменился и климат Земли.

3.5. Круговорот веществ в экосистеме

IV. Работа со схемой участвуют в круговороте

В каждой экосистеме происходит круговорот вещества как результат экофизиологической взаимосвязи автотрофов и гетеротрофов.

Углерод, водород, азот, сера, фосфор и ещё около 30 простых веществ, необходимых для создания жизни клетки, непрерывно превращаются в органические вещества (глициды, липиды, аминокислоты…) или поглощаются в виде неорганических ионов автотрофными организмами, впоследствии используются гетеротрофными, а затем – микроорганизмами-деструкторами. Последние разлагают выделения, животные и растительные остатки на растворимые минеральные элементы или газообразные соединения, которые возвращаются в почву, воду и атмосферу.

V. Работа со схемой круговорот воды

Рис. 6. Круговорот воды в биосфере

VI. Работа со схемой круговорот кислорода

Слайд 10

Цикл кислорода.

Цикл кислорода занимает на Земле около 2000 лет, воды – около 2 млн лет (рис. 6). Это значит, что атомы этих веществ за историю Земли многократно проходили через живое вещество, побывав в телах древних бактерий, водорослей, древовидных папоротников, динозавров и мамонтов.

Биосфера прошла длительный период развития, в течение которого жизнь меняла формы, распространилась из воды на сушу, изменила систему круговоротов. Содержание кислорода в атмосфере постепенно росло (см. рис. 2).

За последние 600 млн лет скорости и характер круговоротов приблизились к современным. Биосфера функционирует как гигантская слаженная экосистема, где организмы не только приспосабливаются к среде, но и сами создают и поддерживают на Земле условия, благоприятные для жизни

VII. Работа со схемой круговорот углерода

Вопросы учащимся:

1. Вспомните, какую роль в природе играет фотосинтез?

2. Какие условия необходимы для фотосинтеза?

Круговорот углерода (рис. 4). Источником его для фотосинтеза служит углекислый газ (диоксид углерода), находящийся в атмосфере или растворенный в воде. Углерод, связанный в горных породах, вовлекается в круговорот значительно медленнее. В составе синтезированных растением органических веществ углерод поступает, затем в цепи питания через живые или мертвые ткани растений и возвращается в атмосферу снова в форме углекислого газа в результате дыхания, брожения или сгорания топлива (древесины, нефти, угля и т.п.). Продолжительность цикла углерода равна трем-четырем столетиям.

Рис. 4. Круговорот углерода в биосфере

VIII. Работа со схемой Круговорот азота.

Вспомните, какую роль играют в накоплении азота?

Круговорот азота (рис. 5). Растения получают азот в основном из разлагающегося мертвого органического вещества посредством деятельности бактерий, которые превращают азот белков в усваиваемую растениями форму. Другой источник – свободный азот атмосферы – растениям непосредственно недоступен. Но его связывают, т.е. переводят в другие химические формы, некоторые группы бактерий и сине-зеленые водоросли, они обогащают им почву. Многие растения находятся в симбиозе с азотфиксирующими бактериями, образующими клубеньки на их корнях. Из отмерших растений или трупов животных часть азота, за счет деятельности других групп бактерий, превращается в свободную форму и вновь поступает в атмосферу.

Рис. 5. Круговорот азота в биосфере

IX. Круговорот серы

Слайд 14

Круговорот фосфора и серы. (рис. 6, 7). Фосфор и сера содержатся в горных породах. При их разрушении и эрозии они поступают в почву, оттуда используются растениями. Деятельность организмов - редуцентов снова возвращает их в почву. Часть соединений азота и фосфора смывается дождями в реки, а оттуда – в моря и океаны и используется водорослями. Но, в конце концов, в составе мертвого органического вещества они оседают на дно и снова включаются в состав горных пород.

X. Круговорот фосфора

За последние 600 млн лет скорости и характер круговоротов приблизились к современным. Биосфера функционирует как гигантская слаженная экосистема, где организмы не только приспосабливаются к среде, но и сами создают и поддерживают на Земле условия, благоприятные для жизни.

XI. Запись вывода в тетради

1. Биосфера – энергетически открытая система

2. Накопление веществ в биосфере идёт за счёт растений, способных преобразовывать энергию солнечного света.

3. Круговорот веществ - необходимое условие существования жизни на Земле.

4. В процессе эволюции в биосфере установилось равновесие между организмами.

Вопросы для повторения:

1. Какие организмы биосферы участвуют в круговороте веществ?

2. От чего зависит количество биомассы в биосфере?

3. Какова роль фотосинтеза в круговороте веществ?

4. Какова роль круговорота углерода в биосфере?

5. Какие организмы принимают участие в круговороте азота?

Домашнее задание: выучить параграф 76, 77.

Опережающее изучение: подобрать материал об основных экологических проблемах современности.

  1. Г.И. Лернер Общая биология: подготовка к ЕГЭ. Контрольные и самостоятельные работы – М.: Эксмо, 2007. – 240 с.
  2. Е.А. Резчиков Экология: Учебное пособие. 2-е изд. испр. и доп. – М.: МГИУ, 2000 – 96 с.
  3. Библиотека интернета: http://allbest.ru/nauch.htm
  4. Сайт Экологии: http://www.anriintern.com/ecology/spisok.htm
  5. Электронный журнал "Экология и жизнь".: http://www.ecolife.ru/index.shtml
  • Вводный урок бесплатно ;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем - от 600 рублей , с носителем языка - от 1500 рублей

Круговорот веществ в биосфере

Основой самоподдержания жизни на Земле являются биогеохимические круговороты . Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.

Типы круговоротов веществ. Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот (большой круговорот веществ в природе) круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.

Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.

Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счет экзогенных процессов. Таким образом, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые – к их сглаживанию.

Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1) резервный фонд – это часть вещества, не связанная с живыми организмами;

2) обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).

Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды – основным причинам всех экологических проблем человечества.

Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) – к малому биогеохимическому.

Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента,чтосоставляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2, то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0^) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши – почти 3/4, остальная часть – фотосинтезирующими организмами Мирового океана. Скорость круговорота – около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3–. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.

Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43–) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.

При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений («цветение» воды) и эвтрофикацию водоемов. Но большая часть фосфора уносится в море.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.

Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO42–), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). Внекоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.

Биосфера – внешняя оболочка нашей планеты, в ней происходят важнейшие процессы, одна из главных ее геосфер. Круговорот веществ в биосфере – многие столетия был и по сей день остается объектом пристального внимания ученых. Благодаря круговороту веществ, формируется глобальный химический обмен для всего живого на Земле, поддерживающий жизнедеятельность каждого вида, отдельно взятого.

Быстрая навигация по статье

Два круговорота

Существует два основных круговорота:

  1. геологический, его также называют большим,
  2. биологический, он же малый.

Геологический имеет глобальное значение, так как осуществляет циркуляцию веществ между водными ресурсами Земли и сушей на планете. Он обеспечивает всемирный оборот воды, известный каждому школьнику: выпадение осадков, испарение, выпадение осадков, то есть - определенную схему.

Системообразующим фактором здесь является вода во всех своих агрегатных состояниях. Полный цикл этого действия дает возможность осуществляться зарождению организмов, их развитию, размножению и эволюции. Алгоритм большого цикла оборота веществ, помимо насыщения участков суши влагой, предусматривает образование и других природных явлений: образования осадочных горных пород, полезных ископаемых, магматических лав и минералов.

Биологическим круговоротом называется постоянный обмен веществ между живыми организмами и компонентами природных компонентов. Происходит это таким образом: живые организмы получают энергетические потоки, а затем, проходя процесс разложения органики, энергия снова попадает в элементы окружающей среды.

Круговорот органического вещества напрямую отвечает за обмен веществ между представителями флоры, фауны, микроорганизмами, грунтовыми породами, и так далее. Биологический круговорот обеспечивается на различных уровнях экосистемы, образуя своеобразный оборот химических реакций и различные превращения энергии в биосфере. Такая схема была сформирована много тысячелетий назад и работает все это время в одном и том же режиме.

Основные элементы

В природе существует множество химических элементов, однако, необходимых для живой природы из них не так уж и много. Выделяют четыре основных элемента:

  1. кислород,
  2. водород,
  3. углерод,
  4. азот.

Количество этих веществ, занимает более половины от всего биологического круговорота веществ в природе. Также есть элементы важные, но используемые в гораздо меньших объемах. Это фосфор, сера, железо и некоторые другие.

Биогеохимические круговороты подразделяют на такие два важных действия, как выработка солнечной энергии Солнцем и хлорофилла зелеными растениями. Химические же элементы имеют неизбежные точки соприкосновения с биогеохимическим и попутно дополняя эту процедуру.

Углерод

Этот химический элемент - важнейший компонент каждой живой клетки, организма или микроорганизма. Органические соединения углерода можно смело назвать основным компонентом возможности протекания и развития жизни.

В природе этот газ находится атмосферных слоях и, частично, в гидросфере. Именно из них происходит запитывание углеродом всех растений, водорослей и некоторых микроорганизмов.

Высвобождение газа происходит путем дыхания и жизнедеятельности живых организмов. Кроме этого, количество углерода в биосфере пополняется и из почвенных слоев, благодаря осуществляемому газообмену корневыми системами растений, разлагающимися остатками и другими группами организмов.

Понятие о биосфере и биологическом круговороте невозможно представить себе без углеродного обмена. На Земле имеется солидный запас этого химического элемента и находится он в некоторых осадочных породах, неживых организмах и ископаемых.

Поступления углерода возможны из известняковых пород, находящихся под землей, они могут обнажаться при разработках месторождений или случайных эрозиях почв.

Оборот углерода в биосфере происходит методом многократного прохождения через дыхательные системы живых организмов и накопления в абиотических факторах экосистемы.

Фосфор

Фосфор, как компонент биосферы, не так ценен в чистой форме, как в составе многих органических соединений. Некоторые из них жизненно важны: в первую очередь - это клетки ДНК, РКН и АТФ. Схема круговорота фосфора основана именно на ортофосфорном соединении, так как усваивается лучше всего именно такой вид вещества.

Вращение фосфора в биосфере, грубо говоря, состоит из двух частей:

  1. водной части планеты – от переработки примитивным планктоном до отложения в виде скелетов морских рыб,
  2. наземной среды – здесь он наиболее сконцентрирован в виде элементов почвы.

Фосфор является основой такого известного полезного ископаемого, как апатит. Разработки рудников с фосфорсодержащими ископаемыми весьма популярны, но это обстоятельство вовсе не поддерживает круговорот фосфора в биосфере, а наоборот, истощает его запасы.

Азот

Химический элемент Азот присутствует на планете в мизерных количествах. Примерное его содержание, в каких бы то ни было живых элементах, всего лишь около двух процентов. Но без него жизнь на планете не представляется возможной.

В круговороте азота в биосфере решающая роль принадлежит определенным видам бактерий. Большая степень участия здесь отведена азотфиксаторам и аммонифицирующим микроорганизмам. Их участие в данном алгоритме настолько значительно, что, если некоторых представителей этих видов не станет, вероятность жизни на Земле будет под вопросом.

Дело здесь в том, что этот элемент в молекулярном виде, таком, каким он выглядит в атмосферных слоях, не может быть усвоен растениями. Как следствие, чтобы обеспечить оборот азота в биосфере, необходима его переработка до аммиака или аммония. Схема переработки азота, таким образом, полностью зависит от деятельности бактерий.

Также важное участие в процессе круговорота азота в экосистеме принимает схема круговорота углерода в биосфере – оба эти цикла тесно связаны между собой.

Современные процессы производства удобрений и другие промышленные факторы имеют огромное влияние на содержание атмосферного вида азота – для некоторых местностей его количество превышено во много раз.

Кислород

В биосфере постоянно происходит круговорот веществ и превращение энергии из одного вида в другой. Важнейшим циклом в этом плане является функция фотосинтеза. Именно фотосинтез обеспечивает воздушное пространство свободным кислородом, который способен озонировать определенные слои атмосферы.

Кислород также высвобождается из молекул воды в процессе круговорота воды в биосфере. Однако данный абиотический фактор наличия этого элемента ничтожно мал по сравнению с тем количеством, которое вырабатывают растения.

Круговорот кислорода в биосфере – процесс длительный, но весьма интенсивный. Если взять весь объем этого химического элемента в атмосфере, то его полный цикл от разложения органического вещества до выделения растением в течение фотосинтеза, длится примерно две тысячи лет! У этого цикла нет перерывов, он происходит ежедневно, ежегодно, много тысячелетий.

В наше время в процессе обмена веществ происходит связывание значительного количества свободного кислорода из-за промышленных выбросов, транспортных выхлопных газов и других загрязняющих атмосферу факторов.

Вода

Понятие о биосфере и биологическом круговороте веществ трудно представить без такого важного химического соединения, как вода. Наверное, объяснять, почему - нет необходимости. Схема циркуляции воды повсюду: все живые организмы на три четверти состоят из воды. Растениям она нужна для фотосинтеза, в результате чего выделяется кислород. При дыхании также образуется вода. Если кратко оценить всю историю жизни и развития нашей планеты, то полный круговорот воды в биосфере, от разложения до новообразования, был пройден тысячи раз.

Так как в биосфере постоянно происходит круговорот веществ и превращения энергии одной в другую, то именно преобразование воды неразрывно связано практически со всеми другими циклами и оборотами в природе.

Сера

Сера, как химический элемент, принимает важное участие в построении правильной структуры белковой молекулы. Круговорот серы происходит благодаря многим видам простейших, а точнее говоря, бактерий. Аэробные бактерии окисляют серу, содержащуюся в органике до сульфатов, а затем, другие виды бактерий завершают процесс окисления до элементарной серы. Упрощенная схема, по которой можно описать круговорот серы в биосфере, выглядит как непрерывные процессы окисления и восстановления.

В процессе круговорота веществ в биосфере происходит накопление остатков серы в Мировом океане. Источники этого химического элемента – стоки речных вод, которые переносят серу потоками воды с почв и горных склонов. Выделяясь из речных и грунтовых вод в виде сероводорода, сера частично попадает в атмосферу и оттуда, включаясь в круговорот веществ, возвращается в составе дождевой воды.

Серные сульфаты, некоторые виды горючих отходов и тому подобные выбросы неизбежно приводят к повышенному содержанию диоксида серы в атмосфере. Последствия этого плачевны: кислотные дожди, заболевания органов дыхания, уничтожение растительности и другие. Преобразование серы, изначально предназначенное для нормального функционирования экосистемы, на сегодняшний день превращается в оружие поражения живых организмов.

Железо

Железо чистого вида в природе встречается очень редко. В основном, например, его можно обнаружить в останках метеоритов. Сам по себе металл этот - мягкий и податливый, но на открытом воздухе моментально вступает в реакцию с кислородом и образует оксиды и окислы. Поэтому, основной вид железосодержащего вещества – это железная руда.

Известно, что круговорот веществ в биосфере осуществляются в виде различных соединений, в том числе железо также имеет активный цикл обращения в природе. В почвенные слои или Мировой океан феррум попадает из горных пород или вместе с вулканическим пеплом.

В живой природе железо играет важнейшую роль, без него не происходит процесс фотосинтеза, не образовывается хлорофилл. В живых организмах железо используется для образования гемоглобина. Отработав свой цикл, попадает в виде органических остатков в почву.

Также существует морской круговорот железа в биосфере. Основной принцип у него похож на наземный. Некоторые виды организмов окисляют железо; здесь используется энергия, а после завершения жизненного цикла металл оседает в водных глубинах в виде руды.

Бактерии, организмы, участвующие в природных циклах экосистемы

Круговорот веществ и энергии в биосфере – непрерывный процесс, обеспечивающий своей бесперебойной работой жизнь на Земле. Основы этого цикла знакомы даже школьникам: растения, питаясь углекислым газом, выделяют кислород, животные и люди вдыхают кислород, оставляя углекислый газ как продукт переработки дыхательного процесса. Работа бактерий и грибов - перерабатывать останки живых организмов, превращая их из органики в минеральные вещества, в итоге усваиваемые растениями.

Какую функцию выполняет биологический круговорот веществ? Ответ прост: так как запас химических элементов и минералов на планете пусть и обширен, но, все равно, ограничен. Необходим именно цикличный процесс превращений и оборачиваемости всех важных компонентов биосферы. Понятие о биосфере и биологическом обмене веществ дает определение вечной продолжительности жизненных процессов на Земле.

Следует отметить, что микроорганизмы в данном вопросе играют очень большую роль. Например, круговорот фосфора невозможен без нитрифицирующих бактерий, окислительные процессы железа не работают без железобактерий. Клубеньковые бактерии играют большую роль в природном обороте азота – без них подобный цикл просто остановился бы. В круговороте веществ в биосфере плесневые грибы являются своего рода санитарами, разлагающими органические остатки до минеральных составляющих.

Каждый класс организмов, населяющих планету, выполняет свою важную роль в переработке тех или иных химических элементов, вносит вклад в понятие о биосфере и биологическом круговороте. Самый примитивный пример иерархии животного мира – пищевая цепь, однако, функций у живых организмов намного больше, а результат глобальнее.

Каждый организм, по сути, является составляющим биосистемы. Чтобы оборот веществ в биосфере работал циклично и правильно, важно соблюдение баланса между количеством поступающего в биосферу вещества и тем количеством, которое могут переработать микроорганизмы. К сожалению, с каждым последующим циклом круговорота в природе этот процесс все больше нарушается вследствие человеческого вмешательства. Экологические вопросы становятся глобальными проблемами экосистемы и пути их решения дорогостоящие финансово, еще более дорогие, если оценивать их со стороны прохождения естественных природных процессов.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере