Большая энциклопедия нефти и газа. Синтетические ткани: описание, разновидности, характеристики

Большая энциклопедия нефти и газа. Синтетические ткани: описание, разновидности, характеристики
Большая энциклопедия нефти и газа. Синтетические ткани: описание, разновидности, характеристики

Разнообразие природы безгранично, но есть материалы, которые не появились бы на свет без человеческого участия. Предлагаем вашему вниманию 10 веществ , созданных руками человека и проявляющих фантастические свойства.

1. Одностороннее пуленепробиваемое стекло

У самых богатых людей есть проблемы: судя по растущим продажам этого материала, им необходимо пуленепробиваемое стекло, которое спасло бы жизнь, но не мешало им отстреливаться.

Это стекло останавливает пули с одной стороны, но в то же время пропускает с другой - этот необычный эффект заключается в «сэндвиче» из хрупкого акрилового слоя и более мягкого эластичного поликарбоната: под давлением акрил проявляет себя как очень твёрдое вещество, и при попадании пули он гасит её энергию, трескаясь при этом. Это даёт возможность амортизирующему слою выдержать удар пули и осколков акрила, не разрушаясь при этом.

При выстреле с другой стороны упругий поликарбонат пропускает через себя пулю растягиваясь и разрушая ломкий акриловый слой, что не оставляет никакого дальнейшего барьера для пули, но не стоит отстреливаться слишком часто, поскольку из-за этого в защите образуются дыры.

2. Жидкое стекло

Было время, когда средства для мытья посуды не существовало - люди обходились содой, уксусом, серебряным песком, трением или проволочной щёткой, но новое средство поможет сэкономить немало времени и сил и вообще оставить мытьё посуды в прошлом. «Жидкое стекло» содержит диоксид кремния, образующий при взаимодействии с водой или этанолом материал, который затем высыхает, превращаясь в тонкий (более чем в 500 раз тоньше человеческого волоса) слой эластичного, сверхстойкого, не токсичного и влагоотталкивающего стекла.

С таким материалом отпадает необходимость в чистящих и дезинфицирующих средствах, так как он способен отлично предохранять поверхность от микробов: бактерии на поверхности посуды или раковины просто изолируются. Также изобретение найдёт применение в медицине, ведь стерилизовать инструменты теперь можно с помощью лишь горячей воды, без использования химических дезинфицирующих средств.

Это покрытие может использоваться для борьбы с грибковыми инфекциями на растениях и герметизации бутылок, его свойства действительно уникальны - оно отталкивает влагу, дезинфицирует, при этом оставаясь эластичным, прочным, пропускающим воздух, и совершенно незаметным, а также дешёвым.

3. Бесформенный металл

Это вещество позволяет игрокам в гольф сильнее бить по мячу, увеличивает поражающую способность пули и продлевает срок службы скальпелей и деталей двигателя.

Вопреки своему названию, материал сочетает прочность металла и твёрдость поверхности стекла: на видео видно, как отличается деформация стали и бесформенного металла при падении металлического шарика. Шарик оставляет на поверхности стали множество маленьких «ям» - это означает, что металл поглощает и рассеивает энергию удара. Бесформенный металл остался гладок, значит, он лучше возвращает энергию удара, о чём также говорит более продолжительный отскок.

Большинство металлов имеет упорядоченное кристаллическое молекулярное строение, и от удара или другого воздействия, кристаллическая решётка искажается, из-за чего на металле и остаются вмятины. В бесформенном металле атомы расположены хаотично, поэтому после воздействия атомы возвращаются на первоначальную позицию.

4. Старлит

Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.

Учёные облучили пластик вспышками высокой температуры, эквивалентными мощности 75-ти бомб, сброшенных на Хиросиму - образец лишь немного обуглился. Один из испытателей заметил: «Обычно между вспышками приходится ждать несколько часов, чтобы материал остыл. Сейчас мы облучали его каждые 10 минут, а он остался невредим, будто в насмешку».

В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно лёгок. Его можно применять при строительстве космических аппаратов, самолётов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав своё изобретение и не оставив никаких описаний. Всё, что известно о строении старлита - что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.

5. Аэрогель


Представьте себе пористое вещество такой низкой плотности, что 2,5 см³ его заключает в себе поверхности, сравнимые с размером футбольного поля. Но это не определённый материал, а, скорее, класс веществ: аэрогель - это форма, которую могут принимать некоторые материалы, а сверхмалая плотность делает его отличным теплоизолятором. Если сделать из него окно толщиной 2,5 см, оно будет иметь те же теплоизоляционные свойства, что и стеклянное окно толщиной 25 см.

Все самые лёгкие в мире материалы - аэрогели: например, кварцевый аэрогель (по сути, высушенный силикон) всего в три раза тяжелее воздуха и достаточно хрупок, зато может выдержать вес, в 1000 раз превышающий его собственный. Графеновый аэрогель (на иллюстрации выше) состоит из углерода, а его твёрдый компонент в семь раз легче воздуха: имея пористую структуру, это вещество отталкивает воду, но поглощает нефть - его предполагается использовать для борьбы с нефтяными пятнами на поверхности воды.

6. Диметилсульфоксид (DMSO)


Этот химический растворитель сначала появился, как побочный продукт выработки целлюлозы и никак не применялся до 60-х годов прошлого века, когда раскрыли его медицинский потенциал: доктор Джейкобс обнаружил, что DMSO может легко и безболезненно проникать в ткани тела - это позволяет быстро и без повреждения кожи вводить различные препараты.

Его собственные лечебные свойства снимают боль при растяжении связок или, например, воспалении суставов при артрите, также DMSO может использоваться для борьбы с грибковыми инфекциями.

К сожалению, когда его медицинские свойства были открыты, производство в промышленных масштабах уже давно было налажено, и его широкая доступность не позволяла фармацевтическим компаниям получать прибыль. Кроме того у DMSO есть неожиданный побочный эффект - запах изо рта использовавшего его человека, напоминающий чеснок, поэтому он используется в основном в ветеринарии.

7. Углеродные нано-трубки


Фактически это листы углерода толщиной в один атом, свёрнутые в цилиндры - их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.

Сами трубки не видны невооружённым взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.

Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.

Углеродные нано-трубки помогают и при лечении рака груди - их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве лёгких и прочных бронежилетов…

8. Пайкерит


В 1942-м году перед англичанами стояла проблема недостатка стали для строительства авианосцев, необходимых для борьбы с немецкими подводными лодками. Джеффри Пайк предложил соорудить огромные плавучие аэродромы изо льда, однако она себя не оправдала: лёд хоть и недорог, но недолговечен. Всё изменилось с открытием нью-йоркскими учёными необыкновенных свойств смеси льда и древесных опилок, которая по прочности была подобна кирпичу, а также не трескается и не плавится. Зато материал можно было обрабатывать, как дерево или плавить, подобно металлу, в воде опилки разбухали, образуя оболочку и предотвращая таяние льда, за счёт чего любое судно можно было ремонтировать прямо во время плавания.

Но при всех положительных качествах, пайкерит был малопригоден для эффективного использования: для постройки и создания ледяного покрова судна весом до 1000 т достаточно было двигателя мощностью в одну лошадиную силу, но при температуре выше -26 °С (а для её поддержания необходима сложная система охлаждения) лёд имеет свойство проседать. Кроме того, целлюлоза, используемая также в производстве бумаги, была в дефиците, поэтому пайкерит так и остался неосуществимым проектом.

Синтетические ткани: названия с фото, свойства и виды материалов из синтетических волокон. Синтетика - дадим полное описание ассортимента тканей в статье. Производство синтетических тканей ведется из полимерного сырья, которое было синтезировано из нефти, природного газа, каменного угля и других веществ. Важно понимать, что ничего натурального в искусственном текстиле нет.

Вместе с этим, подобный метод изготовления волокон позволяет в итоге получить неплохие по характеристикам и рабочим показателям тканевые материалы, которые будут иметь вполне доступные цены. Помимо этого, они будут обладать такими свойствами, которых ни у хлопка, ни у шерсти, ни у шелка никогда не было.

Характеристика и состав синтетических тканей будет напрямую зависеть от того, какая именно полимерная основа была использована для их создания (полиамид, поливинилхлорид, и т.д.).

Основные разновидности синтетических материалов

Ткани из синтетических волокон и их свойства могут заметно различаться в зависимости от используемого при изготовлении сырья. Поэтому принято выделять два наиболее распространенных типа синтетики:

  • Карбоцепная. В эту группу входят полиэтиленовые, поливинилспиртовые, поливинилхлоридные, полиакрилонитрильные, полипропиленовые волокна.
  • Гетероцепная (полиамидные, полиуретановые, полиэфирные волокна).

О производстве, смотрим:

Ассортимент синтетических тканей на современном рынке чрезвычайно обширен. И наиболее востребованными видами являются следующие типы ненатурального текстиля: лайкра, микрофибра, спектра, полиэстер, полисатин, полиамид, акрилан, геркулон, текмилон, куралон, ровиль, капрон, лавсан и многие другие.

Кроме того, выделяют называния и виды синтетических тканей, производство которых ведется на основе натуральных материалов:

  • . Изготавливается из жидкого раствора целлюлозы, в связи с чем материал весьма похож по структуре и составу с натуральными волокнами.
  • Модал. Производство также ведется из целлюлозы, которая была выделена из древесины. Полученный текстиль не вызывает аллергических реакций, не усаживается при носке, не мнется. На фото ткань синтетика этого вида смотрится интересно и необычно.
  • Бамбук. Волокна с антибактериальными характеристиками, обладающие повышенной износостойкостью и прочностью.

Говоря о том, из чего делают синтетические ткани по ГОСТу, нужно обязательно уточнять тип используемого сырья, потому что принципы производства в каждом случае будут разными.

Достоинства и недостатки синтетики

Плюсы и минусы синтетических тканей для многих вполне очевидны, однако о них стоит поговорить отдельно. Современный ненатуральный текстиль очень похож своими характеристиками на натуральные материалы – многие виды имеют способность «дышать», они приятные на ощупь, обладают мягкой фактурой.

Важными преимуществами всех искусственных тканевых материалов является то, что они практически не сминаются и отлично держат форму одежды.

Также существует обширный список синтетических тканей, которые различаются характеристикам, структурой, составом, фактурой и множеством других показателей, поэтому можно без труда подобрать оптимальный вариант, исходя из собственных требований и пожеланий. Видов синтетики в сотни раз больше, чем .

Основные недостатки изделий из синтетики:



Какую синтетику выбрать?

При выборе одежды и различных материалов из синтетики предпочтение следует отдавать продукции производства известных и крупных компаний. Кроме того, не стоит тянуться за низкой ценой, т.к. это может негативно сказаться на здоровье человека при носке такой одежды.

Очень хорошо, если одежда сделана из материала, который отчасти состоит из натуральных и синтетических веществ. Это будет означать, что текстиль комбинирует в себе преимущества двух этих видов волокон. Подробнее о свойствах всех материалов вы можете почитать в разделе " ".

Искусственные материалы подразделяются, как правило, по своим механичес­ким свойствам и по поведению при нагревании на термопласты, реактопласты и эластомеры.

2.11.2.1. Термопласты

Термопласты - это искусственные материалы, которые при нагревании размягчаются, а при охлаждении снова затвердевают. Они состоят из нитевидных макромолекул, которые как во­локна войлока перемешаны между собой, а также могут быть связаны между собой (частичная кристаллизация) (рис. 2.105).

При низких тем­пературах нитеобраз­ные молекулы плотно расположены между собой и почти непод­вижны. Искусствен­ные материалы твер­дые и хрупкие. С уве­личением температу­ры молекулы двига­ются все больше, силы притяжения между ними становятся все меньше. Искусствен­ные материалы стано­вятся эластичными. При дальнейшем на­гревании силы притя­жения уменьшаются настолько, что от­дельные волокна мо­лекул проскальзыва­ют между собой, ис­кусственные материа­лы становятся плас­тичными. Так как при дальнейшем повыше­нии температуры во­локна молекул огра­ничены в свободе пе­ремещения, то искус­

ственные материалы становятся вязкими, однако не газообразными. При охлаждении изменения состояния протекают в обратном порядке. Они могут повторяться сколько угодно раз, до тех пор, пока из-за перегрева молекулярные

www. edisgroup. ru

Таблица 2.21 (окончание)

Обозначение

Свойства

Обработка

Применение (примеры)

Полиамид (ПА)

р = 1,13 кг/дм3

Молочно-белый до желтоватого, очень вязкий и износостойкий, сохраняющий форму при температуре от 90 до 150°С, устойчив к бензину, маслам и раство­рителям, не устойчив к кислотам и ще­лочам, подвергают прядению

Обработка ігш-tYi и т резанием - -

Склеивание 1 j^zz Сварка 1ф Прядение ^ - г®

Фурнитура Защитные

г э 5 Кпиновыеремни Зубчатые колеса Плоские ремни

Полиизобути­лен (ПИБ)

р = 0,93 кг/дм3

Обладающий эластичностью резины, пластичный при температуре от -30 до +65°С, устоичив к кислотам и щело­чам, не устойчив к растворителям, маслам и бензину, устойчивый против атмосферных воздействий и старения

Нанесение

шпателем

Вспенивание оДр:Д°- Нанесение

Клеящие вещества

Долго эластичные Гидроизоля- герметики ционные материалы

2.11.2.2. Термореактивные смолы (реактопласты)

Рис. 2.108. Реактопласты

Термореактивные смолы - это искусственные материа­лы, которые в отвержденном состоянии даже при сильном нагревании больше не размяг­чаются и не расплавляются. Они состоят из макромолекул, которые, как правило, благо­даря поликонденсации обра­зуются из различных исход­ных материалов. Макромоле­кулы термореактивных смол имеют пространственную сет­чатую структуру (рис. 2.107).

Реактопласты, как правило, для конечной обработки поставляются в виде двух компонентов.

Жидкие исходные продукты, например фе­нол и формальдегид, от­верждаются под воздей­ствием тепла, давления или химическим спосо­бом, их называют отвер - дителями для реактопла­стов. Этот процесс отвер­ждения можно прервать, но его невозможно обра­тить. Не полностью от­вержденные реактоплас­ты в большинстве случа­ев можно еще растворить или расплавить. Процесс

отверждения можно запустить снова и продолжать до полного отверждения. Это свойство используют для получения синтетических клеев и лаков.

Дальше к исходным веществам могут быть добавлены наполнители, напри­мер каменная пыль, древесные опилки или текстильные волокна. Из этой смеси с помощью компрессионного прессования производят предметы произвольной формы с различными свойствами. Так, фанеру и текстильные полотна можно про­питать смолой и спрессовать в пластины или фасонные детали. При этом они окончательно затвердевают.

Полностью отвержденные реактопласты уже нельзя обрабатывать термопла­стичным деформированием, поэтому формообразование должно производиться до и во время окончательного затвердевания.

Отвержденные реактопласты больше нельзя растворить или расплавить, они ос­таются твердыми или пластичными, разлагаются при увеличении температуры и обуг­ливаются. Их нельзя ни сваривать, ни склеивать. Однако склеивание возможно при хорошей адгезии. Особое значение имеют реактопласты в качестве пенопластов.

Таблица 2.22. Основные реактопласты

Обработка

Мочевиноформальдегидная смола Меламиновая смола

р = 1,5 кг/дм3

Прозрачная, бесцветная, не темнеет, твердая и хрупкая, нерастворимая, не плавкая, без за­паха, устойчива к бензину, маслам, жирам, не устойчива к сильным кислотам и щелочам

Ненасыщенные полиэфирные смолы

р = 1,3 кг/дм3

Прозрачная, бесцветная твердая и хрупкая, нерастворимая, неплавкая, со стекловолокном усиливается прочность, устойчива к спиртам, бензину, маслам и жирам, не сетчатая термо­пластичная

затвердевания

При некоторых условиях

Распыление Налив Склеивание

^аки Кровля из усиленного

стекловолокном полиэфира

Клеевой раствор Облицовка

Эпоксидные смолы

р = 1,3 кг/дм3

Золотистая, в жидком состоянии ядовита, твердая и хрупкая, неплавкая, нерастворимая, устойчива к слабым кислотам и щелочам, к бензину, маслам, жирам, при обработке выделяются ядовитые пары

Добавки к растворам и бетону

Клей для і. стекла и металла Канистры

Реактопластичные производственные материалы могут обрабатываться реза­нием посредством сверления, фрезерования, распиливания и обработкой напиль­ником. Основными реактопластами являются фенолформальдегидная смола, мо - чевиноформальдегидная смола, меламиновая смола и эпоксидные смолы, нена­сыщенная полиэфирная смола и полиуретаны (рис. 2.108 и табл. 2.22).

Эластомеры не тер­мопластичны и поэтому не деформируются при продолжительном нагревании, а также не поддаются сварке.

При механической деформации ячейки растягиваются далеко друг от друга, но при этом мостик между макромолекулами не разрушается.

После деформации ячейки, похожие на резину, возвращаются в свое перво­начальное положение, искусственные материалы снова принимают свои прежние формы (рис. 2.109).

Эластомеры - это искусственные материалы с эластичными свойствами. Они отличаются от дру­гих эластичных искусственных материалов тем, что их эластичность не зависит от температуры.

Основными эластомерами являются стирол-бутадиеновый каучук, бутилкау­чук и силиконовый каучук (табл. 2.23).

Таблица 2.23. Основные эластомеры

Обозначение

Свойства/обработка

Применение (примеры)

Стирол-бутади- еновый каучук (SBR)

Обладающий эластичностью резины, из­носостойкий, более устойчив к старению и термостойкий чем натуральная резина (от -40 до +110°С), устойчив к кислотам и щелочам, неприятный запах, неустойчив к бензину, маслам и жирам

Мик ро - Клей

пористая кЙЙЧ

J Ш Шланги ЩПМ Ленты гт‘ Л

и профили Резиновые сапоги Автомобильные

Бутилкаучук

Обладающий эластичностью резины с дли­тельной пластичностью, высокое сопротив­ление старению, теплостойкость от -40 до +130°С, устойчив к кислотам и щелочам, неустойчив к бензину, маслам и жирам

Уплотнитель окна, заделка швов уплотнительной лентой

Силиконовый каучук (Q)

Обладающий эластичностью резины с плас­тичностью и эластичностью в диапазоне от -90 до +180°С, стойкий к старению, не­растворимый, распыляемый и шпаклю­емый, пенящийся

Стык шва Зад

злка швов

Полихлоропре- новый каучук (CR)

Обладающий эластичностью резины, стой­кий к атмосферной коррозии, распыляе­мый и шпаклюемый, устойчив к маслам и бензину

В раСТВОреННОМ „oLa виде как клей " а для контактного SA/ формования ,"pt":["Lpotw9jlugs"],"el":["HwR057-G9mw","X1pRqrzIy9g"]}