Условия сохранения: неорганические и органические материалы. Органические материалы На основе органических материалов является

Условия сохранения: неорганические и органические материалы. Органические материалы На основе органических материалов является

В последнее десятилетие мы все чаще слышим об этих продуктах и товарах. Поначалу мы относились к ним как к чему-то экзотическому, но сейчас считаем уже первой необходимостью. Они меняют нашу жизнь и взгляды. В чем философия Organic и почему она так популярна?
В переводе английское слово Organic означает не что иное, как “естественный, экологически чистый, здоровый”. Истоки Organic, как образа жизни, уходят в 20-е годы прошлого века. Наблюдая всеобщую индустриализацию, многие ученые того времени обратили свои взгляды к природе.
Так, немецкий философ Рудольф Штайнер сформулировал теорию гармоничного бытия, когда человек не противостоит природе, а составляет её часть. Идеи Штайнера воплотились в жизнь на некоторых фермах Германии, а затем стали популярны и в других странах Европы. Правда, экологически чистое хозяйство того времени ассоциировали с идиллией, не придавая большого практического значения.
На время Второй Мировой войны идеи Штайнера были забыты, возродившись лишь в 70-е годы в США. В этот период неуклонный рост числа хронических заболеваний стали связывать с качеством питания, тут-то и выяснилось, что привычное таит много опасностей. На смену ему стали использовать экологически чистое , а в магазинах впервые появились товары с маркировкой “Organic”

Чтобы оценить преимущества экологически чистого хозяйства, сначала полезно заглянуть на обычную ферму.
Чтобы растения были более плодовитыми, крупными, используют генетические модификации, а почву от души удобряют химическими соединениями. Для защиты от вредителей будущий урожай опрыскивают пестицидами (в эту группу химических соединений входят всем известные гербициды – они уничтожают сорняки, инсектициды – защищают от насекомых, а также множество других веществ).
Эти химические соединения попадают в стволы, листья и плоды растений, а в конечном итоге, подсоленные по вкусу, оказываются в тарелке с вашим любимым супом.
Доказано, что у людей, которые работают с химическими удобрениями и пестицидами, повышается риск развития раковых заболеваний. Неудивительно, что все меньше потребителей хотят покупать продукты привычного земледелия.
Кроме того, генетики экспериментируют с генами человека, вживленными в растительные организмы. Такой урожай, хотя и будет большим, вряд ли окажется по вкусу многим покупателям. Заботливые родители, будущие мамы, пожилые люди все чаще выбирают продукцию Organic.
Такие растения выращены без использования генетических модификаций, пестицидов, гормонов и химических удобрений. Селекция экологически чистых растений проводится естественным путем, без внедрения чужеродных генов. В качестве удобрений применяют навоз и ограниченный список минеральных удобрений. Для уничтожения вредителей используют их естественных врагов, а для борьбы с сорняками – только неядовитые вещества.

Материалы оснований резисторов

Общие сведенья о старении

Старение - это необратимое изменение свойств материалов под действием внешних и внутренних факторов. По статистике в среднем для резисторов изменение контактного сопротивления происходит в год на 1%.

Причины старения процессы, происходящие в реальных условиях эксплуатации ЭА такие как: кристаллизация, электрохимическое окисление, электромиграция, обрыв связей в молекулах, сорбционные процессы и др.

Сорбция - поглащение материалом разных веществ извне.

Абсорбция - поглащение объемом различных веществ.

Адсорбция - поглощение поверхностью различных веществ.

Наиболее устойчивы к старению резисторы, содержащие неорганические материалы и РЭ из проволоки. Среди непроволочных резисторов более менее старятся тонкопленочные, не содержащие, как правило, органических добавок. А менее стойкие это композиционные с органическим диэлектриком – лакосажевые.

Изменение сопротивления последующего резистора зависит от соотношения между разными компонентами по скорости старения. Для тонкопленочных резисторов обычно сопротивление при старении увеличивается, у толстопленочных старение определяется стабильностью связующих диэлектрических материалов, входящих в состав резистивной пасты (композиции). Старение проволочных резисторов определяется устойчивостью резистивных сплавов к окислительным процессам, кроме температуры, влаги и излучения. На старение влияет атмосферное давление более 3 атмосфер. При пониженном давлении, из-за снижения электрической прочности воздуха, нужно уменьшать рабочее напряжение на резисторах, во избежание их перегрева (за счет ухудшения теплоотвода).

В качестве диэлектрических оснований резистора используется органические и неорганические материалы.

Преимущества органического материала:

У органического материала, самая высокая технологичность. Технологичность - совокупность свойств, объекта производства обеспечивающих минимальную стоимость объекта (простой и дешевый синтез при температуре < 1000 0 С). Органический материал является дешевым сырьем, возможность варьировать свойства, путем введения в массу добавок, как органических, так и неорганических.

Недостатки органического материала:

Невысокая нагревостойкость, у полиимида и фторопласта нагревостойкость составляет +250 0 С. Также недостатком органических материалов является невысокая теплопроводность.

Из органических материалов в качестве основания резисторов используют стеклотекстолит (стеклоткань, пропитанная эпоксидной смолой с модификаторами). Модификаторы придают органической смеси пластичность, вибропрочность и другие свойства по назначению, нагревостойкость составляет +150 0 С.

Также используются текстолиты (ткань х/б, пропитанная феноло-формальдегидной смолой с необходимыми добавками) нагревостойкость составляет +105 0 С.

В качестве органических материалов используют и гетинакс – бумага, пропитанная фенольной смолой, нагревостойкость составляет +100 0 С. Последние два материала, используются для резисторов в микромощных цепях.

Органические материалы или коагуляционные, применяются в процессе создания гидроизоляции с асфальтовыми растворами. Они с легкостью могут растворяться в керосине или бензине. Данные вещества имеют отличные показатели водонепроницаемости, они становятся пластичными при нагревании и жидкими при повышении температуры. Также, органические материалы характеризуются повышенной липучестью к различным стройматериалам.

Ангидрит представляет из себя горную породу, которая не имеет кристаллической воды. В случае необходимости к нему в качестве возбудителей добавляются основные материалы, например, строительная известь. Антигидритный раствор довольно быстро схватывается. Приблизительно через полчаса можно заметить первые изменения в консистенции стройматериала, при этом полное затвердевание органического раствора произойдет уже через 12 часов. Стоит отметить, что для полного затвердевания антигидритной смеси необходим открытый воздух. Раствор может использоваться как вяжущее вещество для штукатурных работ либо при возведении внутренних строительных конструкций. Однако штукатурка из данного органического материала отличается своей чувствительностью к влажной среде.

Гидравлические или, как их еще называют, смешанные вяжущие материалы содержат в своем составе гидрат извести со шлаками либо доменный песок, который позволяет органическому материалу быстрее впитывать воду. При этом процесс затвердевания раствора может происходить даже в воде. Как правило, гидравлические вяжущие материалы применяются только для создания органических растворов и неармированного бетона.

Битумные материалы могут быть природного происхождения либо искусственного. Природные крайне редко встречаются в чистом виде. При этом битум добывается из пропитанных горных пород, которые образуются при выходе нефти из недр земли. Искусственные же получаются путем переработки нефти, из которой отгоняется дизельное топливо, керосин и газы.

Как правило, в природе битум встречается в виде твердого вещества, однако случается и так, что его можно найти в виде вязкой жидкости, состоящей из смесей углеводородов. В данном случае пропитанные битумом горные породы также именуются асфальтными породами. Битум извлекается под действием больших температур. Также может использоваться метод с измельченными горными породами.

Деготь изготавливается из торфа и природного угля, при этом породы сильно нагреваются без малейшего доступа к кислороду.

Асфальтовые растворы применяются в процессе устройства полов, тротуаров, а также в процессе обустройства гидроизоляции штукатурок. Все асфальтобетоны производятся посредством специальных установок на заводах. Они могут использоваться как холодными, так и горячими, где состав органического раствора будет зависеть от условий дальнейшей эксплуатации.

Затвердевание холодного раствора происходит благодаря применению специальных растворителей . Холодные растворы асфальтобетона укладываются на сухие либо слегка влажные поверхности. Каждый новый слой при этом раскатывается катками.

Что до горячего раствора, то его перемешивают специальными мешалками, при этом температура органического материала может достигать 200 градусов. Во время работы каждый новый горячий слой также укладывается на поверхность и раскатывается при помощи катков.

Каждая наука насыщена понятиями, при не усвоении которых основанные на этих понятиях или косвенные темы могут даваться очень трудно. Одними из понятий, которые должны быть хорошо усвоены каждым человеком, который считает себя более-менее образованным, есть разделение материалов на органические и неорганические. Не важно, сколько человеку лет, эти понятия в списке тех, с помощью которых определяют общий уровень развития на любом этапе человеческой жизни. Для того чтобы понять, в чем отличия этих двух терминов, сначала нужно выяснить, что собой являет каждый из них.

Органические соединения – что это

Органические вещества – группа химических соединений с неоднородной структурой, в состав которых входят элементы углерода , ковалентно связанных между собой. Исключение составляют карбиды, угольные, карбоновые кислоты. Также одними из составляющих веществ, кроме углерода, есть элементы водорода, кислорода, азота, серы, фосфора, галогена.

Такие соединения формируются благодаря способности атомов углерода перебывать в одинарных, двойных и тройных связях.

Сферой обитания органических соединений являются живые существа. Они могут быть как в составе живых существ, так и появится в результате их жизненной деятельности (молоко, сахар).

Продуктами синтеза органических веществ являются продукты питания, лекарства, элементы одежды, материалы для строения, различное оборудование, взрывчатки, различные виды минеральных удобрений, полимеры, добавки для пищи, косметика и другое.

Неорганические вещества – что это

Неорганические вещества – группа химических соединений, которые в своем составе не имеют элементов углерода, водорода или химических соединений, составляющим элементом которых является углерод. Как органические, так и неорганические являются составляющими клеток. Первые в виде дающих жизнь элементов, другие в составе воды, минеральных веществ и кислот, а также газов.

Что общего между органическими и неорганическими веществами

Что может быть общего между двумя, казалось бы, такими понятиями-антонимами? Оказывается, общее и у них имеется, а именно:

  1. Вещества как органичного, так неорганического происхождения состоят из молекул.
  2. Органические и неорганические вещества можно получить в результате проведения определенной химической реакции.

Органические и неорганические вещества – в чем разница

  1. Органические более известны и исследованы в науке.
  2. Органических веществ в мире числится намного больше. Количество известных науке органических – около миллиона, неорганических – сотни тысяч.
  3. Большинство органических соединений связаны между собой с помощью ковалентного характера соединения, связь неорганических между собой возможна с помощью ионного соединения.
  4. Присутствует отличие и по составу входящих элементов. Органические вещества составляют углеродные, водородные, кислородные, реже – азотные, фосфорные, серные и галогенные элементы. Неорганические – состоят из всех элементов таблицы Менделеева, кроме углерода и водорода.
  5. Органические вещества намного значительнее поддаются влиянию горячих температур, могут разрушаться даже при незначительных температурах. Большинство неорганических менее предрасположены к воздействию сильного нагревания из-за особенностей типа молекулярного соединения.
  6. Органические вещества являются составляющими элементами живой части мира (биосферы), неорганические – неживой (гидросферы, литосферы и атмосферы).
  7. Состав органических веществ является по своему строению сложнее, чем состав неорганических.
  8. Органические вещества отличаются большим разнообразием возможностей химических превращений и реакций.
  9. Из-за ковалентного типа связи между органическими соединениями химические реакции по времени продолжаются несколько дольше, чем химические реакции в неорганических соединениях.
  10. Неорганические вещества не могут быть продуктом питания живых существ, даже более того – некоторые из этого типа сочетаний могут быть смертельно опасны для живого организма. Органические вещества являются продуктом, произведенным живой природой, а также элементом строения живых организмов.

3.1. Органический синтез и производство полимеров

1) органический синтез (получение органических продуктов на основе окиси углерода, метановых, этиленовых, ацетиленовых и ароматических углеводородов);

2) производство полимеров и материалов на их основе (целлюлоза, волокна, каучуки, лаки, краски, клеи, пластмассы, резинотехнические изделия);

Отходы органического синтеза не имеют такого значения, как отходы других органических производств. Причина проста: несмотря на то, что в отдельных случаях они достигают значительных объемов, выброс их за пределы предприятия остается минимальным, поскольку они подвергаются практически 100%-ной рекуперации и утилизации. Но это относится только к «штатным» предприятиям. Те же заводы и цеха, которые не производят, а только используют органические вещества, имеют намного меньший уровень использования органических отходов. К сожалению, до сих пор их обезвреживание сводится к сжиганию в неприспособленных для этого печах, т.е. в печах, не снабженных системами гарантированного дожига любой органики до CO 2 и H 2 O (заметим, что даже и в таких приборах не исключено образование исключительно устойчивых диоксинов).

Отходы производства полимерных материалов - это чаще всего мономеры, которые стараются в максимальной степени рекуперировать. Что же касается переработки указанных материалов, то она связана с образованием как химических, так и механических отходов, которые необходимо утилизировать.

3.1.1. Отходы производства хлорированных углеводородов

Подавляющую часть производимого Cl 2 (около 80%) потребляет промышленность хлорорганического синтеза, причем из-за специфики реакций хлорирования органических соединений (RH + Cl 2 = RCl + HCl), коэффициент использования хлора на хлорирование органики не превышает 50% , остальной поступает в отходы в виде абгазной соляной кислоты. Последняя получается в таких количествах, что ее улавливание составляет не менее 10% от общего производства.

3.1.1.1. Утилизация абгазной соляной кислоты

Абгазная соляная кислота – это газообразный отход, содержащий, помимо HCl, также Cl 2 , CO, CO 2 , O 2 , N 2 , H 2 и пары летучих органических соединений.

Наиболее распространенными способами утилизации абгазной HCl являются:

1) абсорбция HCl водой или концентрированной кислотой;

2) абсорбция органики подходящими раствориталями

Особое место в технологии утилизации абгазной HCl занимают методы ее окисления с целью рекуперации Cl 2 . Это наиболее грамотный и экономичный подход, особенно в случае окисления в газовой фазе кислородом в присутствии катализатора (смесь FeCl 3 и KCl):


4HCl + O 2 ® 2H 2 O + 2Cl 2

Можно использовать и пиролюзит по реакции

4HCl + MnO 2 = MnCl 2 + 2H 2 O + Cl 2

при условии регенерации марганца и соляной кислоты:

2MnCl 2 + 0,5 O 2 + 2H 2 O = Mn 2 O 3 + 4HCl .

Регенерированная абгазная кислота полностью соответствует требованиям ГОСТа на техническую HCl , но для целей электролиза она не годится из-за повышенного содержания органики и применяется только для получения хлорорганических соединений, в основном, хлоралканов, для разложения фосфоритов и для обработки бедных руд и шламов.

3.1.1.2. Обезвреживание сточных вод производства поливинилацетата

Исходным сырьем служит винилацетат СН 3 СООСНСН 2 , полимеризацию которого ведут в растворах метанола, этанола и ацетона

в присутствии инициатора (перекиси бензоила). При этом развивается высокая температура, и для охлаждения полученного полимера и его промывки используется вода. В результате промывная вода аккумулирует исходный мономер, растворители и некоторое количество продукта (поливинилацетата). Это так называемая. технологическая вода. Частично её можно использовать для получения водных дисперсий ПВА, используемых для получения клеящих веществ, -в производстве красителей.

Но большую часть СВ необходимо рекуперировать и вернуть промежуточные продукты в производство. И здесь возникает проблема улавливания ценных продуктов, связанная с необходимостью разделения полимера и воды. Последнее представляет весьма сложную задачу, связанную с наобходимостю преодоления противоречия между стремлением технологов получить максимально устойчивые дисперсии и стремлением экологов их разделить. Эту задачу решают путем нагревания СВ и добавления электролитов. После отделения полимера в воде остаются спирты, растворители, мономеры, уксусная кислота. Все эти соединения обезвреживаются в проточных аэротенках, комбинированных с вторичными отстойниками. В результате аэробного окисления образуются многочисленные органические кислоты – конечные продукты жидкофазного окисления органических примесей. Их нейтрализуют известью при рН=11, полученные соли коагулируют и отделяют от раствора. Иногда СВ подвергают прямой дистилляции или ректификации, но кубовые остатки при этом приходится растворять, разбавлять и затем очищать биохимически.

При получении поливинилацетатных дисперсий (ПВАД) часто используют поливиниловый спирт (ПВС, СН 2 СНОН n). Он делает дисперсии настолько устойчивыми, что они не разделяются даже при многократном разбавлении. В этом случае в СВ добавляют коагулянты (FeCl 2 , Al 2 (SO 4) 3) в количестве 100 – 200 мг/л, доводят рН до 7, отделяют коагулят, определяют величину химического поглощения кислорода (ХПК), которая не должна быть выше 500 мг/л, и направляют воду на биологические очистные сооружения.В настоящее время выпускаются суперустойчивые ПВАД, полученные с помощью стабилизаторов типа С-10. В этом случаях схема утилизации полимеров и рекуперации воды оказывается сложнее:

Исх.СВ ® усреднение ® нейтрализация ®(СВ)*® нагрев ® добавление коагулянтов ® коррекция рН ® добавление полиакриламида (ПАА) ® флокуляция ® отстаивание ® верхний слив ® активированный уголь ® регенерация угля ® выделение органической фазы. Нижний продукт отстойников направляют на шламовое поле, а очищенную воду – на БОС.

3.1.1.3. Отходы производства поливинилового спирта

Поливиниловый спирт – продукт омыления ПВА в спиртовых растворах в присутствии щелочных или кислотных катализаторов. Получаемые при этом СВ содержат от 500 до 3000 мг ПВС /л, в то время, как на БОС можно направлять растворы с концентрацией не более 50 – 70 мг/л, а ПДК пвс для открытых водоемов составляет 0,5 мг/л.

Лучший способ обезвреживания подобных СВ – высаливание какой-либо неорганической, например, глауберовой солью Na 2 SO 4. 10H 2 O или бишофитом MgCl 2 ..6H 2 O и последующая коагуляция боратами щелочных и щелочноземельных металлов. При этом достигается практически 100% -ная очистка, и воду можно использовать повторно. Однако возникает проблема существенных потерь ПВС, извлечь который из шлама весьма сложно. Поэтому иногда выгодно ограничиться высаливанием, собрать органическую фазу и направить ее на получение ПВАД.

Пенный способ извлечения ПВС из СВ. Технология сводится к продувке СВ подходящим газом и удалению пены, в которую переходит до 90% всего ПВС. Образующаяся в результате такой «самофлотации» пена довольно устойчива, и для ее разрушения необходимо добавлять небольшое количество исходной воды и коагулянт. Очищенная по этому способу СВ даже в одгоступенчатом варианте содержит не более 50 – 70 мг/л ПВС и может направляться непосредственно на БОС или в заводскую систему локальных очистных сооружений, включающую аэротенки, работающие на базе соответствующих бактериальных штаммов при температуре 20 – 37 0 , рН 6 – 8 и очищающие единичный объем СВ за 3 – 7 суток.

3.1.1.4. Отходы производства полистирола

Процесс полимеризации стирола протекает в водной среде, и готовый полимер подвергается водной промывке, поэтому основными отходами-загрязнителями являются маточные растворы и промывные воды. Суммарные СВ представляют собой молочно-белые коллоидные растворы, содержащие, помимо частиц полимера, также смешанный реагент 3Ca 3 (PO 4) 3 .2Ca(OH) 2 – стабилизатор суспензии ПС. Технология очистки и обезвреживания подобных СВ сравнительно проста:

Исх.СВ ® усреднение ® нейтрализация до рН 10 - 11® добавление 0,1% ПАА ® отстаивание (осадок нейтрализуют до рН 7 и направляют в отвал)® верхний слив ® нейтрализация® флокуляция ® фильтрация (осадок в отвал)® фильтрат на БОС.

Время аэрации СВ для аэротенков-смесителей до 50, для вытеснителей – до 5 часов.

Более сложные технологии предполагают использование методов флотации, электрофлотации и электрокоагуляции, что позволяет организовать водооборот до кратности, равной 10. Последняя ограничена накоплением в СВ неорганических ионов, главным образом, натрия и хлора. При этом отмечено, что накапливающиеся Ca 2+ и SO 4 2- не только не вредят, но и полезны для протекания основного технологического процесса. Кстати, и удалить их намного проще, чем Na + и Cl - . Последние можно эффективно удалить только с помощью мембранных технологий.

3.1.1.5. Обеезвреживание атмосферных выбросов производства пластмасс

Наиболее уязвимой перед возжействием атмосферных загрязнителей является тропосфера, которая простирается на 20 км над поверхностью Земли и составляет 85% всей массы атмосферы. Лишь немногие, в основном, наиболее легкие элементы и соединения попадают в более высокие слои, подвергаясь в них различным превращениям, связанным с воздействием космического излучения. В табл. 4 приводятся данные о макросоставе тропосферы, который изменяется медленно и незначительно.

Таблица 4

Макросостав тропосферы, %об.

Компонент N 2 O 2 Ar CO 2 Ne He Kr Xe

В отличие от макросостава тропосферы, ее микросостав, во-первых отличается огромным разнообразием, во-вторых, изменяется с заметной скоростью и, в-третьих, не столь стабилен и зависит от региональных техногенных условий (табл 5).

Таблица 5

Компонент CH 4 H 2 N 2 O CO O 3 NO + NO 2 NH 3 Др. углеводороды

Причинами загрязнения атмосферы выбросами газовыделяющих про-

изводств являются:

Неполный выход основного продукта;

Образование побочных газообразных веществ;

Выброс части сырья, содержащего газообразные компоненты;

Потери вспомогательных газообразных и легколетучих веществ (чаще всего растворителей);

Выделение продуктов горения, окисления, гниения, разложения;

Малое и большое дыхание неполногерметичной аппаратуты (малое – потери за счет разности давлений внутри и снаружи реактора, большое – выбросы во время опорожнения и заполнения реактора жидкими летучими компонентами);

Потери при протекании периодических процессов или отдельных стадий;

Потери за счет переналадки, переоснащения, профилактики и ремонта аппаратуры;

По степени токсичности, выражаемой уровнем ПДК в рабочей зоне (ПДК р.з.) газовые выбросы делятся на 4 категории:

· чрезвычайно токсичные – ПДК р.з < 1 мг/м 3 ;

· высоко токсичные - 1 < ПДК р.з. < 10;

· умеренно токсичные - 10 < ПДК р.з. < 100;

· малотоксичные - ПДК р.з. > 100;

В промышленности пластмасс наиболее токсичными являются выбросы фтористых соединений, стирола, нитрила акриловой кислоты, бензола, этилбензола, винилхлорида, фенола, формальдегида, метанола, винилацетата и др.

3.1.1.5.1. Методы утилизации газовых выбросов

Исходным набором данных, определяющим применимость того или иного метода улавливания, являются физические и химические свойства газа, его токсичность, роль в данном технологическом процессе, а также дефицитность, стоимость и некоторые другие показатели.

1. Рассеяние. Это метод пассивного обезвреживания, преследующий цель снижения средней концентрации газа до безопасного уровня, определяемого величиной его ПДК. Основной прибор, обеспечивающий рассеяние – труба с естественным или принудительным газопотоком. Высота трубы, позволяющая осуществить рассеяние, определяется расчетом на основе соответствующих исходных данных и условий (постоянство агрегатного состояния, химическая инертность, постоянная входная концентрация, постоянная фоновая концентрация, двумерность зоны рассеяния и др.). К сожалению, рассеяние часто применяют, не считаясь с необходимостью выполнения всех этих условий, и это дискредитирует простой, надежный и дешевый метод..

2. Обеспыливание . Сухое производится в пылевых камерах, акустических пылеуловителях (частота 3 – 5 кГц), мокрое – в полых и насадочных скрубберах и в циклонах с пристеночной водяной пленкой. Применимость этого метода определяется в основном теми же условиями, что и в случае использования метода рассеяния. Олнако, поскольку метод предполагает наличие достаточно сложной и дорогой аппаратуры, то обеспыливание стремятся совместить с операциями очистки и обезвреживания газа.

3. Абсорбция . Ее применяют на заключительных стадиях очистки, используя абсорбенты, заряженные подходящими активными группировками.

4. Адсорбция . Применяется для финишной очистки обеспыленных и очищенных от наиболее активных компонентов газовых выбросов. Речь идет об удалении таких относительно менее реакционноспособных молекулах, как низшие оксиды азота, СО, метановые углеводороды и т.п. Для этого применяют большой набор регенерируемых и нерегенерируемых адсорбентов, таких, как уголь, силикагели, алюмогели, цеолиты, кокс, глины, торф, бокситы, пеностекло, пеношлакоситаллы, смолы, а также синтетические неорганические сорбенты на основе оксидов кремния, алюминия и циркония.

В наиболее развитом варианте технологическая схема процесса адсорбционной очистки газа включает узел адсорции и десорбции (могут осуществляться как в одном и том же, так и в разных аппаратах) и узел переработки десорбата, включающий аппаратуру для отстаивания, вакуумной отгонки, дистилляции, ректификации и экстракции.

Если адсорбент и адсорбат недефицитны, то их подвергают огневому рафинированию, которое, однако, имеет известные ограничения. Если же они являются ценными компонентами, то десорбцию совмещают с регенерацией адсорбента и ведут либо с помощью водяного пара, парообразного или жидкого органического растворителя, либо даже в токе инертного газа.

3.1.1.6. Некоторые особенности абсорбционной очистки газов

Улавливание растворимых газов и паров жидкостями подчиняется известному закону Генри:

с г = к. Р г,

где с г - концентрация газа в смеси, кг/м 3 ; к - постоянная, зависящая от температуры, а также от свойств газа и жидкости; Р г - парциальное давление газа, МПа.

От растворимости данного газа зависит расход поглотительной жидкости.

В основе расчета технологического процесса абсорбции лежит уравнение материального баланса газа:

Q (Y* н - Y* в) = L (X* н - X в *),

где Q - расход поглощаемого газа, кг/с;

Y* н и Y* в - концентрации поглощаемого газа в газовом потоке в нижней и верхней точках аппарата, кг/м 3 ;

Х* н и Х* в - концентрации поглощаемого газа в поглощающей жидкости в нижней и верхней точках аппарата, кг/м 3 .

В качестве абсорбента может быть использована любая жидкость, в которой данный газ достаточно хорошо растворим. Но для эффективного использования в конкретном технологическом процессе поглотитель должен обладать следующим набором качеств:

· высокая поглотительная способность;

· селективность действия по отношению к данному газу (абсорбтиву);

· устойчивость к термическому разложению;

· химическая устойчивость;

· низкая летучесть при данных технологических условиях;

· низкая вязкость;

· низкая коррозионная активность;

· хорошая способность к регенерации;

· низкая стоимость по сравнению с извлекаемым компонентом;

· низкая токсичность, а по возможности – безвредность.

Этим условиям в оптимальной степени соответствуют вода и водные растворы кислот, солей, щелочей, окислителей, восстановителей, комплексообразователей, а также некоторых органических водорастворимых жидкостей, таких, как спирты, ацетон, диметилсульфоксид и др.

Основной недостаток абсобционных методов – образование шламов, забивающих аппаратуру и обвязку. Чтобы этого избежать, абсорбции должны предшествовать более дешевые методы очистки газа.

3.1.1.7. Твердые отходы производства пластмасс

Производство пластиков в мире удваивается каждые 5 лет, в то время, как период удвоения производства других материалов составляет 10, 15 и даже 20 лет. Отсюда катастрофический рост объема твердых отходов в развитых странах, который, несмотря на все усилия, не снижается за пределы 1% от объема производства и составляет в США - 6, в Японии - 4, в Германии - 1,5, в Англии - 1 и в остальных странах 0,5 млн. тн.

В целом отходы пластмасс четко подразделяются на 4 вида:

1) отходы производства;

2) отходы переработки;

3) отходы промышленного потребления;

4) отходы бытового потребления.

Доля каждого вида в общем объеме возрастает от 1 к 4, например, в Японии первая позиция составляет 5, вторая - 10, третья - 20, четвертая - 65%. Парадоксально, но объемы утилизации в большинстве стран-производителей пластиков возрастают, наоборот, от 4 к 1, что еще больше усиливает крутизну кривой роста в прямом направлении. Основная проблема здесь состоит в том, что чем глубже степень переработки, тем сложнее процессы утилизации. Здесь правомерно говорить о качестве отходов с точки зрения их способности к утилизации и признать, что отходы пластмасс с этой точки зрения самые сложные. Поэтому в настоящее время развиваются два технологических направления, призванных разрешить проблему отходов пластмасс:

Совершенствование технологии производства и переработки пластмасс, обеспечивающее минимизацию отходов;

Совершенствование технологии переработки отходов полимерных материалов.

Эти направления развиваются в основном в применении пластмасс производственного назначения, которые в меньшей степени подвергаются рассеянию. Степень рассеяния отходов пластмасс бытового потребления обратно пропорционально числу людей в данной местности, сконцентрировать их намного труднее. К тому же и качественные показатели их сильно различаются из-за стремления фирм повысить их декоративность, привлекательность, что связано с введением добавок, затрудняющих утилизацию.

Поэтому в отношении пластмасс бытового назначения развиваются методы производства фото-, хемо-, био- и радиоразрушаемых пластмасс, срок службы которых ограничивается сроком их использования.

3.1.1.7.1. Измельчение отходов пластмасс

В технологии утилизации отходов пластмасс есть один сложный аспект, связанный с операцией, которая предшествует любому последующему процессу их переработки. Речь идет об их измельчении, и сложность здесь в том, пластмассы в большинстве своем – вязкие, вязко-упругие, пластичные, мягкие, часто пеноподобные, волокнистые или пленочные материалы.

Для их измельчения чаще всего используют ножевые дробилки, снабженные устройствами для охлаждения материала и деталей аппарата и позволяющие получить минимальный размер до 2 мм.

По измельчаемости полимеры располагаются в следующий ряд:

Полистирол(ПС)>Полиэтилен низкого давления(ПЭн.д.) >Полиэтилентерефталат (ПЭТФ)> Полипропилен (ПП)> Полиамид (ПА)>Полиэтилен высокого давления (ПЭв.д.)>Полиуретан (ПУ)>Политетрафторэтилен (ПТФЭ) .

Особое место среди способов измельчения пластмасс занимают криогенные технологии, применяемые для дробленияи и измельчения трудноизмельчаемых пластиков – ПУ и ПТФЭ в среде жидкого азота (Т кип =77 К).

В отдельных случаях измельчение удается исключить. Например, индивидуальные (однородные) отходы термопластичных полимеров перерабатывают на типовом оборудовании в изделия менее ответственного назначения. Коллективные отходы подвергают гидроэкструзии (выдавливанию через узкие отверстия), при которой наблюдается саморегулирование вязкостных характеристик отдельных типов полимеров. Используется также двухканальная гидроэкструзия, при которой внутренние слои полимера представляют собой отходы, а тонкий наружный слой формируется из первичного высококачественного пластика.

Значительную часть отходов пластмасс перерабатывают в пеноизделия, используя для вспенивания смеси карбонатов с лимонной кислотой. Часто совмещают литье и вспенивание расплавов с диамидом азодикарбоновой кислоты, который получают по следующей схеме:

­­ ­­ ­­ ­­ ­­ ­­

С - С Þ С - С Þ C - N = N - C Þ N 2 ­

¯ ¯ ¯ ¯ ¯ ¯

НО ОН Н 2 N NН 2 H 2 N NH 2

Дикарбо- Диамид ди- Диамид азодикарбоновой

новая к-та карбоновой к-ты к-ты

В целом необходимо учитывать, что механические характеристики вторичных изделий, как правило, хуже, чем первичных, но все же экономичность вторичной переработки остается достаточно высокой из-за улучшения экологических показателей среды, дешевизны сырья, простоты технологии и экономии энергии. Кроме того благодаря дешевизне вторичных материалов из них можно изготавливать малые архитектурные и строительные формы, герметичные емкости и контейнеры для захоронения ядовитых веществ.

Наименее квалифицированное применение твердые отходы пластмасс находят в строительстве в качестве заменителей битумов, но их можно также использовать для производства плит, погонажа и других полимердревесных изделий.

Совершенно иное направление утилизации твердых отходов пластмасс складывается на основе процессов термодеструкции полимеров, позволяющих получить низкомолекулярные полимеры, а также газообразные и жидкие продукты глубокого пиролиза.

3.2. Отходы резинотехнических изделий

В зависимости от количества введенной при вулканизации серы резины можно разделить на мягкие (2 – 8% S), полумягкие (8 – 12%), полутвердые (12 – 20%) и твердые (25 – 30%).

Отходы резинотехнических изделий (РТИ) , как и пластмасс, образуются в 4 основных сферах: первичное производство полимеров; производство РТИ; промышленное потребление; бытовое использование.

Основная масса РТИ потребляется в сфере промышленного производства. Важнейшие виды РТИ – это автомобильные покрышки и другие формовые изделия, конвейерные ленты, приводные ремни, шестерни, различные детали трения, половые и кровельные покрытия, сырая резина, прорезиненные ткани, техническая пластина, футеровочные и гидроизоляционные материалы.

Отходы РТИ делятся на невулканизированные и вулканизированные. Первые могут быть возвращены в первичное производство, вторые подвергают механической или химической переработке. Вторичная механическая переработка позволяет получить ряд ценных изделий и материалов: плиты, шифер, антивибрационные, гидро- и электроизоляционные прокладки, блоки для окантовки дамб, причалов, волнорезов, противооползневых ограждений. Кроме того, во всех случаях из отходов вулканизированных резин могут быть получены наполнители для изготовления многих видов первичных изделий.

3.2.1. Отходы шинной промышленности

Шины – один из самых многообразных и многочисленных видов РТИ. Масса 1 покрышки колеблется от 1 до 1000 кг. Эффективная переработка покрышек – дело будущего. А пока что это один из самых крупномасштабных видов твердых отходов мирового производства искусственных материалов.

Механическая переработка шин мало чем отличается от переработки других вулканизированных материалов и связана с решением ряда проблем сбора, сортировки, измельчения, хранения, транспортировки – проблем, которые в ряде случаев делают механическую переработку нерентабельной. Некоторые страны в этом вопросе пошли по пути так называемого отложенного спроса, предоставив потомкам решать эту сложную технологическую задачу. В результате возникли хранилища и склады, в которых скопились миллионы покрышек.

Химическая переработка шин включает следующие методы:

1) водная термохимическая автоклавная девулканизация, которая включает измельчение, обработку водой при температуре180 0 и давлении 0,5 Мпа в течение 6 – 8 часов и последующее использование образовавшегося девулканизата для получения вторичных РТИ;

2) щелочная эмульгационная девулканизация с получением водных дисперсий, пригодных для изготовления пленок, пропиток, покрытий, кровельных и футеровочных материалов и др.

3) высоко- и низкотемператйрный пиролиз.

Способы 1 и 2 – это скорее рекуперация, нежели утилизация, поскольку они предусматривают получение девулканизатов – латексов и сырых резин, которые возвращаются в первичное производство. Третий способ представляет классический пример утилизации, т.е. совокупности технологий, позволяющих получить на базе отходов новые продукты, в данном случае целую гамму новых ценных веществ.

3.2.1.1.Технология высокотемпературного пиролиза покрышек

Пиролиз, или сухая перегонка органических веществ, возник как один из методов переработки природных жидких и твердых топлив. . Он осуществляется путем нагревания продуктов в закрытых аппаратах без доступа или с ограниченным поступлением воздуха. При этом могут протекать: а) физические и б) физико-химические процессы разделения компонентов по температурам плавления и кипения и в) химические процессы деструкции сложных веществ с образованием более простых, низкомолекулярных жидких и газообразных продуктов.

Реакционный аппарат представляет вертикальную печь с верхней загрузкой, отапливаемую горючими газами самого процесса пиролиза и продуваемую горячим воздухом. Покрышки через шлюзовой затвор загружаются в верхнюю часть аппарата, подвергаются первоначальному нагреву, подсушиваются отходящими газами и продвигаются в зону нагрева и далее в реакционную зону, в которой и происходит основной процесс пиролиза. Летучие продукты пиролиза и пиролизные газы, содержащие 50% H 2 , 25% СН 4 и 25% высококипящих веществ, поступают в аппарат для отделения сажи и далее в ректификационную колонну, в которой происходит окончательное разделение продуктов на горючие газы, а также на легкую, среднюю и тяжелую фракции, представляющие собой смеси жидких и твердых при обычной температуре продуктов. При этом на 100 тонн покрышек получают 40 тонн дефицитной зажи, возвращаемой на шинные заводы и на производство пластмасс, 25 тонн масел высокого качества, 25 тонн горючих газов и 10 тонн стали. Производительность аппарата может достигать 10 тыс. тонн покрышек в год.

Для пиролиза смесей более мелких фракций РТИ, а также органических составляющих мусора применяют барабанные вращающиеся печи типа цементных, недостатком которых являются значительные выбросы газзообразных веществ в атмосферу из-за невозможности надежной герметизации загрузочных и разгрузочных узлов.

3.3. Утилизация нефтеотходов

В 2000 году добыча нефти составила около 5 млрд. тонн. Ее уровень определяется не техничекими возможностями, а экономическими интересами основных стран-производителей. По пути к местам переработки часть ее неизбежно теряется, попадая в разряд транспортных потерь (испарение, утечки, проливы, неполносливы, обводнение, аварийные сбросы и т.п.). Эти отходы трудно даже учесть, не говоря об утилизации.

Прочие нефтеотходы (НО) подразделяются на 2 группы – отходы переработки и отходы потребления. Первые – топлива, масла, смазки, растворители – обычно относят к механическим отходам, подвергают механической рекуперации и присоединяют к соответствующим видам продукции напосредственно в ходе технологических процессов. Вторые – отходы и выбросы соответствующих отработанных нефтепродуктов – теряются или утилизируются в ходе эксплуатации соответствующих машин и агрегатов. Их можно назвать эксплуатационными отходами. Отношение масс транспортных, механических и эксплуатационных отходов в США равно 1: 1: 15. Можно полагать, что и среднемировой баланс нефтеотходов мало отличается от этого соотношения.

Соответственно распределяются и резервы повышения коэффициента использования НО: он определяется, в основном. уровнем утилизации эксплуатационных отходов. При этом необходимо разделить все виды эксплуатационных потерь на неизбежные при данном уровне развития технологии и на те, которых можно избежать за счет ее усовершенствования. Например, угар топлива и масел в двигателях внутреннего сгорания неизбежны, хотя и могут быть минимизированы, но мойка и обезжирка замасленных деталей растворителями должны быть категорически запрещены. Только за счет замены этих жидкостей эффективными и пожаробезопасными моющими средствами можно сохранить для более квалифицированного использования около 1 млн. тн. нефтепродуктов, что составляет, однако, не более 10% от возможной экономии этих материалов только по России.

Нефтеотходы загрязняют все три агрегатных составляющих биосферы, но все же большая часть их попадает в водную среду, уровень загрязнения которой непрерывно растет и для индустриальных зон может колебаться от 0,1 до 100 мг/л. Это не удивительно, если учесть, что до 25% чистой водопроводной воды в России пиратски используется на технические нужды, а на большинстве предприятий сети технического водопровода вообще отсутствуют.

Расчетные исходные нормы загрязнения нефтеотходами воды, поступающей на очистные сооружения, составляет для производственных СВ 800, а для ливневых – 200 мг/л (СНиП - II – 93 – 74).

Следует, однако, отметить, что небольшие количества НО довольно легко поглощаются естественной гидробиологической средой (ЕГБС), не загрязненной другими отходами, подавляющими развитие бактерий.

ЕГБС очень своеобразно усваивает нефтеотходы:

® Г ® ® Ж - верхние слои водоема

НО ЕГБС ¯

® Ж ® ® Т - донные отложения

На схеме показано, что все виды газообразных и жидких НО в конечном итоге образуют донные отложения водоемов, биопревращения которых протекают намного медленнее из-за уменьшения концентрации кислорода. В результате накопления донных отложений фон загрязнения воды может достигать 2 мг/л. Особенно страдают северные водоемы, в которых дополнительными аккумуляторами нефтезагрязнений являются снег и лед (содержание НО в них составляет 0,3 – 0,6 кг/м 3), при таянии которых наблюдаются пики содержания НО в воде.

3.3.1. Классификация отходов нефтепереработки

Основную часть НО составляют токсичные промышленные отходы органического типа с минеральными и дисперсными металлическими примесями. Номенклатура НО включает 5 типов:

· автомобильные и энергетические топлива;

· смазочные и охлаждающие масла;

· топливные и смазочные присадки;

· растворители и разжижители;

· смазочно-охлаждающие жидкости.

В среднем отходы всех этих пяти типов НО составляют около 10% от объема продукции нефтепереработки. Утилизация их, как правило, не вызывает затруднений, Некоторые виды НО принимаются на переработку заводами-изготовителями. Однако, существует проблема, ограничивающая масштабы развития квалифицированных технологий утилизации, - смешивание различных видов НО. Поэтому необходимо различать виды и группы НО, их фазовые состояния и способы переработки (табл. 5, принятые сокращения: НССВ – нефтесодержащие сточные воды; Т – твердое; Ж – жидкое, ПЖ – полужидкое, П – пастообразное, ВЛ – влажность, М – маслообразное, С – суспензия, Э – эмульсия, ОС – осадки, ШЛ – шламы, СЛ – сливы, ЛОС – локальные очистные сооружения, КОС – кустовые очистные сооружения, КОК – крупные очистные комплексы, НПЗ – нефтеперерабатывающие заводы, СОЖ – смазочно-охлаждающие жидкости, Р – растворители, ПРЖ – промывочные жидкости, ФК – флотоконцентраты, КГ – кислые гудроны, ПАВ – поверхностно-активные вещества).

3.3.2.1. Пассивное и активное обезвоживание нефтеотходов

Пассивное обезвоживание осуществляют в прудах-испарителях, в полях-шламонакопителях и в резервуарах-уплотнителях, активное – в сгустителях, фильтрах, циклонах и центрифугах. Пассивные, без механического воздействия, методы обезвоживания требуют для своей реализации значительные площади и затраты на поддержание режима подачи разделяемых материалов. Обезвоженные этими методами шламы направляют на окончательную обработку с целью выделения и очистки нефтяных фракций.

Более эффективными разделителями фаз являются отстойники. Но скорости отстаивания отдельных категорий НССВ резко различаются, и в целом остаются весьма невысокими. При этом конечные продукты отстаивания (ШЛ) содержат значительны количества воды. Остаточная влага составляет, 60 - 80% (сказывется отрицательное влияние нефтеглинистых фракций). Поэтому для их разделения необходимо применять интенсивные методы обезвоживания, прежде всего фильтрацию с предшествующей коагуляцией. Нефтепесковые смеси отстаиваются хорошо, и осадки содержат не более 30% остаточной влаги.

Таблица 5

Происхождение и способы переработки нефтеотходов