Применение тепловых двигателей в хозяйстве. Роль тепловой энергии в мировом энергетическом балансе. Классификация тепловых двигателей

Применение тепловых двигателей в хозяйстве. Роль тепловой энергии в мировом энергетическом балансе. Классификация тепловых двигателей
Применение тепловых двигателей в хозяйстве. Роль тепловой энергии в мировом энергетическом балансе. Классификация тепловых двигателей

Тепловой двигатель (паровая машина) сыграл и продолжает играть чрезвычайно важную роль в развитии нашей цивилизации. Его изобретение и внедрение в производство, транспорт и другие сферы деятельности человека послужили причиной промышленной революции XVIII столетия, открыли новые горизонты в нашей жизни.

Работа теплового двигателя базируется на действии водяного пара или других газов. Устройства с использованием упругого действия воздуха и водяного пара были известны еще в античном мире. Известнейшие из них сконструировали древнегреческие изобретатели из города Александрии: Ктезибий, Филон и Герон.

Начиная с 80-х годов XVIII столетия, универсальный тепловой двигатель Уатта нашел широкое применение во всех отраслях хозяйства многих стран. Например, в Великобритании создали свыше 300 таких двигателей для текстильной, горной, металлургической, пищевой отраслей. Паровой двигатель стимулировал развитие новых рабочих машин, транспорта.

Так родилась и утвердилась в разных сферах паровая машина. С

того времени тепловой двигатель постоянно совершенствовался, яркими примерами чего является развитие паровозов, двигателей внутреннего сгорания. Но это уже совсем другие истории. И, несмотря на то, что с конца XIX столетия во многих случаях паровая машина была заменена электрическим двигателем, она сыграла особую роль в техническом прогрессе человечества, а сотни мастерских конструкций тепловых двигателей 18-ХХ столетий представляют собой образцы высокого взлета научно-технического и инженерного гения человека.

43. Типы двигателей. Перспективы развития конструкций двигателей.

Дви́гатель , мотор (от лат. motor приводящий в движение) - устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX века наряду со словом «мотор», которым с середины XX века чаще называют электродвигатели и двигатели внутреннего сгорания (ДВС).

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным - преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям (ПД) относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм - их приводит в действие сила гравитации(падающая вода и сила притяжения), тепловые двигатели - в них химическая энергия топлива или атомная энергия преобразуются в другие виды энергии. Ко вторичным двигателям (ВД) относятся электродвигатель (электромотор), пневмодвигатель, гидродвигатель (гидромотор).

Поршневые двигатели - камерой сгорания является цилиндр, где химическая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма. ДВС классифицируют: а) По назначению - делятся на транспортные, стационарные и специальные. б) По роду применяемого топлива - легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо). в) По способу образования горючей смеси - внешнее (карбюратор) и внутреннее у дизельного ДВС. г) По способу воспламенения либо искра либо сжатие. д) По числу и расположению цилиндров разделяют рядные, горизонтальные, вертикальные, V-образные, оппозитные.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но располагать запасами энергии еще недостаточно. Необходимо уметь за счет энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели - устройства, способные совершать работу.

Необратимость процессов в природе налагает определенные ограничения на возможность использования внутренней энергии для совершения работы в тепловых двигателях.

Роль тепловых двигателей в развитии теплоэнергетики и транспорта. Большая часть двигателей на Земле - это тепловые двигатели, т. е. устройства, превращающие внутреннюю энергию топлива в механическую энергию.

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Более 80% всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели паровые турбины - устанавливают также на всех атомных электростанциях. На этих станциях для получения пара высокой температуры используется энергия атомных ядер.

Далее, на всех основных видах современного транспорта преимущественно используются тепловые двигатели. На автомобильном транспорте применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели) Эти же двигатели устанавливаются на тракторах, незаменимых в сельском хозяйстве.

На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы в конечном счете получают энергию преимущественно от тепловых двигателей электростанций.

На водном транспорте используются как двигатели внутреннего сгорания, так и мощные паровые турбины для крупных судов.

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах - турбореактивные и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах.

Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех видов скоростного транспорта.

Основное условие работы тепловых двигателей. Во всех тепловых двигателях топливо при сгорании повышает температуру рабочего тела на сотни или тысячи градусов по сравнению с окружающей средой. При этом повышается давление рабочего тела по сравнению с давлением окружающей среды, т. е. атмосферы, и тело совершает работу за счет своей внутренней энергии. Рабочим телом у всех тепловых двигателей является газ.

Ни один тепловой двигатель не может работать при одинаковой температуре его рабочего тела и окружающей среды. В состоянии теплового равновесия не происходит никаких макроскопических процессов; в частности, не может совершаться работа.

Тепловой двигатель совершает работу за счет внутренней энергии в процессе перехода теплоты от более горячих тел к более холодным. При этом совершаемая работа всегда меньше количества теплоты, получаемой двигателем от горячего тела (нагревателя). Часть теплоты передается более холодному телу (холодильнику).

Роль холодильника. Выясним, почему при работе теплового двигателя неизбежна передача части теплоты холодильнику.

При адиабатном расширении газа в цилиндре (рис. 45) работа совершается за счет убыли внутренней энергии без передачи теплоты холодильнику. Согласно формуле (4.14) . При изотермическом процессе вся передаваемая газу теплота оказывается равной работе; .

Однако как в первом, так и во втором процессах работа совершается при однократном расширении газа до давления, равного внешнему (например, атмосферному давлению). Двигатель же должен работать длительное время. Это возможно лишь в том случае, когда все части двигателя (поршни, клапаны и т.д.) совершают движения, повторяющиеся через определенные промежутки времени. Двигатель должен периодически по прошествии одного рабочего цикла возвращаться в исходное состояние; или же в двигателе должен совершаться неизменный во времени (стационарный) процесс (например, непрерывное вращение турбины).

Чтобы возвратить газ в цилиндре в исходное состояние, его необходимо сжать. Для сжатия газа надо совершить над ним работу. Работа сжатия будет меньше работы, совершаемой самим газом при расширении, если газ сжимать при меньшей температуре, а значит, и при меньшем давлении, чем это происходило при расширении газа. Для этого необходимо до сжатия или в процессе сжатия охладить газ, передав некоторое количество теплоты холодильнику.

В используемых на практике двигателях совершивший работу (отработанный) газ (или пар) не охлаждают перед последующим сжатием, а выпускают из двигателя и следующий рабочий цикл начинают с новой порцией газа. Отработанный газ имеет более высокую температуру, чем окружающие тела, и передает им некоторое количество теплоты.

Для вращения паровой турбины на ее лопасти непрерывно подается горячий пар под большим давлением, который после совершения работы охлаждается и выводится из турбины. Остывая и конденсируясь, пар передает теплоту окружающим телам.

У паровой турбины или машины нагревателем является паровой котел, а холодильником - атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы. В двигателях внутреннего сгорания повышение температуры происходит при сгорании топлива внутри двигателя и «нагревателем» являются сами раскаленные продукты сгорания топлива. Холодильником также служит атмосфера, куда выбрасываются отработанные газы.

Принципиальная схема теплового двигателя изображена на цветной вклейке Рабочее тело двигателя получает количество теплоты от нагревателя, совершает работу А и передает холодильнику количество теплоты

Другая формулировка второго начала термодинамики. Невозможность полного превращения внутренней энергии в работу в тепловых двигателях, периодически возвращающихся в исходное состояние, обусловлена необратимостью процессов в природе и лежит в основе еще одной формулировки второго закона термодинамики.

Эта формулировка принадлежит английскому ученому У. Кельвину: невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Обе формулировки второго закона термодинамики взаимно обусловливают друг друга. Если бы теплота могла самопроизвольно переходить от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в работу с помощью любого теплового двигателя.

УРОКИ ФИЗИКИ В 10 КЛАССЕ.
МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

ОСНОВЫ ТЕРМОДИНАМИКИ *

Урок № 6

Тема. Роль тепловых двигателей в народном хозяйстве. Экологические проблемы, связанные с их использованием

Цель: углубить знания учащихся о физические принципы работы тепловых двигателей,их хозяйственное применение, ознакомить учащихся с достижениями науки и техники в деле совершенствования тепловых двигателей; развивать коммуникативные компетенции, умение анализировать, делать выводы; формировать сознательное отношение к охране окружающей среды, воспитывать заинтересованность учеников физикой, стимулировать творческую активность учащихся.

Тип урока: урок обобщения и систематизации знаний.

Форма проведения: урок-семинар.

Оборудование: карточки с надписями: историки, экологи, портреты физиков.

II. Выступления групп

Историк. в 1696 году английский инженер Томас Севери (1650-1715) изобрел паровой насос для подъема воды. Он применялся для откачки воды в оловянных шахтах. Его работа была основана на охлаждении разогретого пара, что, сжимаясь, создавала вакуум, который втягивал в трубу воду из шахты.

1707 года насос Севери был установлен в Летнем саду в Петербурге. Английский механик Томас Ньюкомен (1663-1729) создал 1705 году паровую машину для откачки воды из шахт. 1712 года, использовав идеи Папена и Севери, Ньюкомен построил машину, которая применялась на шахтах Англии до середины XVIII в.

Первые практически действующие универсальные машины были созданы русским изобретателем И. Ползуновим (1766 г.) и англичанином Д. Уаттом (1774 г.)

Паровая машина Ползунова имела высоту 11м, объем котла 7 м3, высоту цилиндров 2,8 м, мощность 29 кВт. Эта машина долгое время работала на одном из горно- добывающих заводов России.

Историк. в 1765 году Дж. Уатт сконструировал, а позже усовершенствовал паровой двигатель принципиально нового типа. Его машина могла не только откачивать воду, но и предоставлять движения станкам, кораблям и экипажам. До 1784 года создание универсального парового двигателя было фактически закончено, и он стал основным средством получения энергии в промышленном производстве. В течение 1769-1770 годов французский изобретатель Никола Жозеф Кюньо (1725-1804) сконструировал паровая повозка - предок автомобиля. Он до сих пор хранится в Музее искусств и ремесел в Париже.

Американец Роберт Фултон (1765-1815) провел в 1807 году построенный им колесный пароход «Клермонт» по реке Гудзон. 25 июля 1814 года локомотив английского изобретателя Джорджа Стефенсона (1781-1848) сквозняк по узкоколейке 30 т груза в 8 вагонах со скоростью 6,4 км/ч . в 1823 году Стефенсон основал первый паровозостроительный завод. 1825 года начала действовать первая железная дорога от Стоктона до Дарлингтона, а в 1830 году - железнодорожная линия общественного пользования между промышленными центрами Ливерпулем и Манчестером. Джеймс Несміт (1808-1890) создал в 1839 году чрезвычайно мощный паровой молот, что сделал настоящий переворот в металлургическом производстве. Он же разработал несколько новых металлообрабатывающих станков.

Так начался расцвет индустрии и железных дорог - сначала в Великобритании, а затем в других странах мира.

Учитель. Давайте вспомним принцип работы тепловой машины.

Механик. Тепловыми двигателями называют машины, в которых внутренняя энергия превращается в механическую энергию.

Есть несколько видов тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Во всех этих двигателях энергия топлива сначала превращается в энергию газа (пара). Расширяясь, газ (пар) выполняет работу и при этом охлаждается, часть его внутренней энергии превращается в механическую. Следовательно, тепловая машина имеет нагреватель, рабочее тело и холодильник. Это было установлено в 1824 г. французским ученым Сади Карно. Принцип действия такой машины можно изобразить схемой (рис. 1).

Кроме того, Карно установил, что двигатель должен работать по замкнутому циклу и самым выгодным является цикл, состоящий из двух изотермических и двух адіабатичних процессов. Он получил название цикла Карно и его можно изобразить графически (рис. 2).

Из графика видно, что рабочее тело совершает полезную работу, которая численно равна площади, описанной циклом, т.е. площади 1 - 2 - 3 - 4 - 1.

Закон сохранения и превращения энергии для цикла Карно заключается в том, что энергия, полученная рабочим телом от окружающей среды, равна энергии, переданной им окружающей среде. Работу тепловые двигатели выполняют благодаря разности давлений газа на поверхностях поршней или лопаток турбины. Эта разность давлений создается с помощью разницы температур. Таков принцип работы тепловых двигателей.

Механик. Одним из самых распространенных видов тепловой машины является двигатель внутреннего сгорания (ДВС), который сейчас используется в различных транспортных средствах. Вспомним строение такого двигателя: основным элементом является цилиндр с поршнем, внутри которого сгорает топливо.

Цилиндр имеет два клапана - впускной и выпускной. Кроме того, работа двигателя обеспечивается наличием свечи, шатунного механизма и коленчатого вала, соединенного с колесами автомобиля. Работает двигатель в четыре такта (рис. 3): И такт - впуск горючей смеси; II такт - сжатие, в конце его топливо воспламеняется искрой от свечи; III такт - рабочий ход, во время этого такта газы, образующиеся от сгорания топлива, выполняют работу, толкая поршень вниз; IV такт - выпуск, когда отработаны и охлажденные газы выходят наружу. График замкнутого цикла, который характеризует изменения состояния газа во время работы этого двигателя, изображен на рис. 4.

Полезная работа за один цикл примерно равен площади фигуры 2 - 3 - 4 - 5 - 6 - 2. Распространение таких двигателей обусловлено тем, что они имеют малую массу, компактны, отличаются сравнительно высоким КПД (теоретически до 80 %, а практически - только 30 %). Недостатками является то, что они работают на дорогом топливе, сложные по конструкции, имеют очень большую скорость вращения вала двигателя, их выхлопные газы загрязняют атмосферу.

Эколог. Для повышения эффективности сгорания в двигателях бензина (увеличения его октанового числа) в него добавляют различные вещества, преимущественно этиловую жидкость, в состав которой входит свинец тетраетил, что играет роль антидетонатора (около 70 % соединений свинца выбрасывается в воздух, когда работают двигатели). Наличие в крови даже незначительного количества свинца приводит к тяжелым заболеваниям, снижение интеллекта, перевозбуждение, развития агрессивности, невнимательности, глухоты, бесплодия, задержки роста, нарушения вестибулярного аппарата и т.д.

Еще одной проблемой являются выбросы карбон (II) оксида. Можно представить объем ущерба от СО, если только один автомобиль за сутки выбрасывает в воздух около 3,65 кг карбон (II) оксида (парк автомобилей превышает 500 млн, а плотность потоков машин, например, на автомагистралях Киева достигает 50-100 тыс. автомобилей в сутки с выбросом ежечасно 1800-9000 кг СО в воздух!).

Токсичность СО для человека заключается в том, что, попадая в кровь, он лишает эритроциты (красные кровяные тельца) способности транспортировать кислород, вследствие чего наступает кислородное голодание, удушье, головокружение и даже смерть. Кроме того, ДВС вносят свою долю и в тепловое загрязнение атмосферы, температура воздуха в городе, где есть большое количество автомобилей, всегда на 3-5 °С выше от температуры за городом.

Историк. В 1896-1897 гг . немецким инженером Г. Дизелем был предложен двигатель, который имел высокий КПД, чем был в предыдущих. В 1899 г. дизельный двигатель был приспособлен к работе на тяжелом жидком топливе, что повлекло его дальнейшее широкое использование.

Учитель. Какие различия между дизельным и карбюраторным ДВС?

Механик. Дизельные двигатели не уступают по распространению карбюраторным двигателям. Строение их почти одинакова: цилиндр, поршень, впускной и выпускной клапаны, шатун, коленчатый вал, маховик и отсутствует свеча.

Это связано с тем, что топливо загорается не от искры, а от высокой температуры, которая создается над поршнем вследствие резкого сжатия воздуха. В это раскаленный воздух впрыскивается топливо, и оно сгорает, образуя рабочую смесь. Этот двигатель является чотиритактовим, диаграмма его работы изображена на рис. 5.

Полезная работа двигателя равна площади фигуры 2 - 3 - 4 - 5 - 6 - 2. Такие двигатели работают на дешевых сортах топлива, их КПД составляет около 40 %. Основным недостатком является то, что их работа очень связана с температурой окружающей среды (при низких температурах они не могут работать).

Эколог. Значительный прогресс в дизелебудуванні сделал эти двигатели «чище», чем бензиновые; их уже успешно используют на легковых автомобилях.

В выхлопных газах дизелей почти не содержится ядовитого карбон оксида, так как дизельное топливо не содержит свинец тетраетилу. То есть дизели загрязняют окружающую среду гораздо меньше, чем карбюраторные двигатели.

Историк. Следующими тепловыми двигателями, которые мы рассмотрим, будут паровые и газовые турбины. Поскольку такие машины используют в основном на электростанциях (тепловых и атомных), то время их внедрения в технику следует считать вторую половину 30-х годов XX ст., хотя первые небольшие проекты таких агрегатов предпринимались еще в 80-е годы XIX в. Конструктором первой промышленной газовой турбины следует считать В. М. Маховского.

В 1883 году шведский инженер Г. Дач предложил первую конструкцию одноступеневої паровой турбины, а в 1884-1885 гг . англичанин Ч. Парсон сконструировал первую многоступенчатую турбину. Ч. Парсон в 1899 г. использовал ее на ГЭС в Эльберфельде (Германия).

Механик. В основу действия турбин возложена вращения колеса с лопастями под давлением водяного пара или газа. Поэтому главной рабочей частью является ротор турбины - закрепленный на валу диск с лопатками по его ободу. Пара от парового котла направляется специальными каналами (соплами) на лопасти ротора. В соплах пар расширяется, давление его падает, но возрастает скорость истечения, т.е. внутренняя энергия пара превращается в кинетическую энергию струмени.

Паровые турбины бывают двух типов: турбины активного действия, вращения роторов которых происходит в результате удара струмини в лопасти и турбины реактивного действия, в которых лопасти размещены так, что пара, вырываясь из щели между ними, создает реактивную тягу. К преимуществам паровой турбины следует отнести быстроходность, значительную мощность и большую удельную мощность. КПД паровых турбин достигает 25 %. Его можно повысить, если турбина имеет несколько степеней давления, состоящие из сопел и рабочих лопаток, которые чередуются. Скорость пара в такой турбине уменьшается на рабочей лопасти, а затем (после прохождения через сопло) вновь увеличивается вследствие уменьшения давления. Таким образом, от степени к степени давление пара последовательно уменьшается, и она многократно выполняет работу. В современных турбинах количество ступеней достигает 30.

Недостатком турбин является инерционность, невозможность регулирования скорости вращения, отсутствие обратного хода.

Эколог. Применение паровых турбин на электростанциях требует отвода больших площадей под пруды, в которых охлаждается отработанный пар. С увеличением мощностей электростанций резко возрастает потребность в воде, кроме того, в результате охлаждения пара большое количество теплоты выделяется в окружающую среду, что приводит, опять же, к тепловому возбуждению и повышению температуры Земли.

Историк. К тепловым машинам относятся реактивные двигатели. Теория таких двигателей воспроизведена в трудах Е. К. Циолковского, которые написаны в начале XX ст., а внедрение их связано с именем другого украинского изобретателя - С. П. Королева. В частности, под его руководством были созданы первые реактивные двигатели, применявшиеся на самолетах (1942), а позже (1957) был запущен первый космический спутник и первый пилотируемый космический корабль (1961). Какой же принцип действия реактивных двигателей?

Механик. Тепловые двигатели, которые используют реактивную тягу утечка газов, называют реактивными. Принцип их действия заключается в том, что топливо, сгорая, превращается в газ, который с большой скоростью вытекает из сопел двигателя, заставляя двигаться летательный аппарат в противоположном направлении. Рассмотрим несколько типов таких двигателей.

Одним из простейших по конструкции является прямоточный воздушно-реактивный двигатель. Это труба, в которую встречный поток нагнетает воздух, а жидкое топливо впрыскивается в нее и поджигается. Раскаленные газы вылетают из трубы с большой скоростью, придавая ей реактивной тяги. Недостатком этого двигателя является то, что для создания тяги он должен двигаться относительно воздуха, то есть самостоятельно он взлететь не может. Наибольшая скорость составляет 6000 - 7000 км/ ч.

Если в реактивном двигателе есть турбина и компрессор, то такой двигатель называют турбокомпресорним. Во время работы такого двигателя воздух через заборник попадает в компрессор, где сжимается и подается в камеру сгорания, куда впрыскивается топливо. Здесь оно поджигается, продукты сгорания проходят через турбину, которая вращает компрессор, и вытекают через сопло, создавая реактивную тягу.

В зависимости от распределения мощностей эти двигатели делятся на турбореактивные и турбовинтовые. Первые большую часть мощности затрачивают на реактивную тягу, а вторые - на вращения газовой турбины.

Преимуществами этих двигателей является то, что они имеют большую мощность, которая обеспечивает большие скорости, необходимые для поднятия в космос. Недостатки - большие габариты, малый КПД, а также вред, который они наносят окружающей среде.

Эколог. Поскольку в реактивных двигателях также сгорает топливо, то они, как и все тепловые двигатели, загрязняют окружающую среду вредными веществами, которые выделяются во время сгорания. Это диоксид углерода (СO 2), угарный газ (СО), сернистые соединения, азот оксиды и другие. Если во время работы автомобильных двигателей массы этих веществ составляли килограммы, то теперь - это тонны и центнера. Кроме того, высотные полеты самолетов, запуски космических ракет, полеты военных баллистических ракет негативно влияют на озоновый слой атмосферы, разрушая его. Подсчитано, что сто запусков подряд космического челнока «Спейс-Шаттл» могли бы почти полностью разрушить защитный озоновый слой атмосферы Земли, Учитель. Какими же должны быть двигатели будущего? Механик. Большинство специалистов считает, что это должны быть водородные двигатели, то есть такие, в которых водород вступать в реакцию с кислородом, в результате чего будет образовываться вода. Разработки, которые ведутся в этом направлении, дают много различных конструкций подобных двигателей: от таких, где баки заправляются соответствующими газами, к машинам, где топливом является сахарный сироп. А еще есть конструкции, где топливом является масло, спирт и даже биологические отходы. Но пока что все эти двигатели существуют только в виде экспериментальных образцов, которым еще далеко до внедрения в промышленное производство. Однако даже эти разработки дают надежду на то, что в будущем мы получим экологически гораздо более «чистые» машины, чем современные. И хотя создать тепловую машину, которая совсем не загрязнял бы окружающую среду, нам еще не удается, но стремиться к этому мы будем.

III . Домашнее задание

Выполнить домашнюю контрольную работу

Вариант 1

1. Давление газа под поршнем составляет 490 кПа. Какую работу выполняет газ, если его при постоянном давлении нагревают до температуры, вдвое большей от начальной? Начальный объем газа 10 л.

2. Пар поступает в турбину при температуре 500 °С, а выходит при температуре 30 °С. Считая турбину идеальной тепловой машиной, вычислите ее КПД.

3. Или остынет воздух в комнате, если держать открытой дверцу включенного в сеть холодильника?

Вариант 2

1. На сколько изменяется внутренняя энергия 200г гелия при увеличении температуры на 20 К?

2. Температура нагревателя идеальной машины 117 °С, а холодильника 27 °С. Количество теплоты, что ее получает машина от нагревателя за 1 с, равно 60 кДж. Вычислить КПД машины, количество теплоты которую забирает холодильник за 1 с, и мощность машины.

3. Когда КПД теплового двигателя выше: в холод или жару?

Приложение 1

Паровая машина И. Ползунова

Джеймс Уатт усовершенствовал паровой насос Ньюкомена, повысив эффективность его работы. Его паровые машины, изготовленные 1775 года, работали на многих заводах Великобритании

Некоторые данные о двигателе

Карбюраторный двигатель

Дизельный двигатель

Рабочее тело

Продукты сгорания бензина

Продукты сгорания дизельного топлива

Дизельное топливо

Давление в цилиндре

1,5·106-3,5·106 Па

Температура сжатого воздуха

Температура продуктов сгорания

20-25 % (до 35 %)

30-38 % (до 45%)

Использование

В легких мобильных машинах сравнительно небольшой мощности (легковые автомобили, мотоциклы и т.д.)

В грузовых автомобилях большой мощности, тракторах,тягачах, тепловозах, на стационарных установках ТЭС

История создания

Впервые запатентован в 1860 г. французом Ленуаром; в 1878 г. был построен двигатель с КПД = 2 % (немецкий изобретатель Отто и инженер Ланген)

Созданный в 1893 г. немецким инженером Р. Дизелем

Приложение 3

Схема устройства реактивного двигателя


Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Тепловые двигатели. К.П.Д. теплового двигателя. Роль тепловых двигателей в народном хозяйстве

2 слайд

Описание слайда:

Тепловой машиной называется устройство, в котором внутренняя энергия превращается в механическую. Примеры тепловых машин: Двигатель внутреннего сгорания (ДВС) а) карбюраторный двигатель б) дизельный двигатель в) реактивный двигатель Паровые и газовые турбины. Что такое тепловая машина?

3 слайд

Описание слайда:

Первые тепловые двигатели Кто и когда изобрёл? Деви Папин – английский физик, один из изобретателей парового двигателя. 1680г. – Изобрёл паровой котёл 1681г. – Снабдил его предохранительным клапаном 1690г. – Первым использовал пар для поднятия поршня и описал замкнутый термодинамический цикл парового двигателя. 1707г. – Представил описание своего двигателя

4 слайд

Описание слайда:

Кто и когда построил? Конец 18 века – построены первые паровые машины. 1774 год – английским изобретателем Джеймсом Уаттом построена первая универсальная паровая машина. С 1775 по 1785 г. – фирмой Уатта построено 56 паровых машин. С 1785 по 1795г. – той же фирмой поставлено уже 144 такие машины.

5 слайд

Описание слайда:

Первый паровой автомобиль 1770г. Жан Кюньо – французский инженер, построил первую самодвижущуюся тележку, предназначенную для передвижения артиллерийских орудий

6 слайд

Описание слайда:

«Младший брат» - паровоз 1803г. – Английский изобретатель Ричард Тревитик сконструировал первый паровоз. Через 5 лет Тревитик построил новый паровоз. он развивал скорость до 30 км/ч 1816г. – Не имея поддержки, Тревитик разорился и уехал в Южную Америку

7 слайд

Описание слайда:

Решающая роль 1781-1848г. – Английский конструктор и изобретатель Джордж Стефенсон 1814г. – Начал заниматься строительством паровозов. 1823г. – Основал первый в мире паровозостроительный завод 1829г. – На соревновании лучших локомотивов первое место занял паровоз Стефенсона «Ракета». Его мощность составляла 13 л.с., а скорость 47 км/ч.

8 слайд

Описание слайда:

Двигатель внутреннего сгорания 1860г. – Французским механиком Ленуаром был изобретён двигатель внутреннего сгорания 1878г. – Немецким изобретателем Отто сконструирован четырёхтактный двигатель внутреннего сгорания. 1825г. – Немецким изобретателем Даймлером был создан бензиновый двигатель внутреннего сгорания Примерно в то же время Бензиновый двигатель был разработан Костовичем в России.

9 слайд

Описание слайда:

Двигатели Дизеля 1896г. – Немецкий инженер Рудольф Дизель сконструировал двигатель внутреннего сгорания в котором сжималась не горючая смесь, а воздух. Это наиболее экономичные тепловые двигатели 1)работают на дешёвых видах топлива 2) имеют КПД 31-44% 29 сентября 1913г. Сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

10 слайд

Описание слайда:

Тепловые машины могут быть устроены различным образом, но в любой тепловой машине должно быть рабочее вещество, или тело, которое в рабочей части машины совершает механическую работу, нагреватель, где рабочее вещество получает энергию и холодильник отбирающий у рабочего тела тепло. Рабочим веществом может быть водяной пар или газ.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

КПД теплового двигателя (машины) Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики. Что это такое?

13 слайд

Описание слайда:

Цикл Карно. КПД идеального теплового двигателя Наибольшим КПД при заданных температурах нагревателя Tнагр и холодильника Tхол обладает тепловой двигатель, где рабочее тело расширяется и сжимается по циклу Карно график которого состоит из двух изотерм (2–3 и 4–1) и двух адиабат (3–4 и 1–2).

14 слайд

Описание слайда:

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости. В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

15 слайд

17 слайд

Описание слайда:

Парниковый эффект – повышение концентрации углекислого газа (продукт сгорания в нагревателях тепловых машин) в атмосфере. Углекислый газ пропускает видимое и ультрафиолетовое излучение Солнца, но поглощает инфракрасное излучение, идущее в космос от Земли. Это приводит к повышению температуры нижних слоев атмосферы, усилению ураганных ветров и глобальному таянию льдов. Прямое влияние ядовитых выхлопных газов на живую природу (канцерогены, смог, кислотные дожди от побочных продуктов сгорания). Разрушение озонового слоя при полетах самолетов и запусках ракет. Озон верхних слоев атмосферы защищает все живое на Земле от избыточного ультрафиолетового излучения Солнца. Экологические последствия работы тепловых двигателей

18 слайд

Описание слайда:

Человек собирается купить автомобиль сроком на три года, но не может выбрать, какой автомобиль приобрести, с дизельным двигателем, который стоит 23 тысячи долларов, либо автомобиль с бензиновым двигателем стоимостью 20 тысяч долларов. Мощности автомобилей одинаковые и равны 100 кВт. За год он на автомобиле планирует проезжать около 10 тысяч километров. Средняя скорость движения 72 км/ч. Какой вариант покупки экономически будет более выгодным? Цена за один литр: дизельное топливо 15 руб., бензин 18 руб. Плотность бензина 710 кг/м3 диз. топливо 820 кг/м3. Удельная теплота сгорания соответственно 156*10^6 Дж./кг, 127*10^6. Дж/кг.

В настоящее время невозможно назвать ни одну область производственной деятельности человека, где бы ни использовались тепловые установки. Космическая техника, металлургия, станкостроение, транспорт, энергетика, сельское хозяйство, химическая промышленность, производство пищевых продуктов - вот далеко не полный перечень отраслей народного хозяйства, где приходится решать научные и технические вопросы, связанные с тепло установками.

В тепловых двигателях и тепловых установках происходит преобразования теплоты в работу или работы в теплоту.

Паровая турбина-это тепловой двигатель, в котором потенциальная энергия пара превращается в кинетическую, а кинетическая - в механическую энергию вращения ротора. Ротор турбины непосредственно соединяется с валом рабочей машины, который может быть электрогенератор, гребной вент и др.

Применение тепловых двигателей в железнодорожном транспорте особенно велико, т.к. с появление тепловозов на железнодорожных магистралях облегчило перевоз основных масс грузов и пассажиров во всех направлениях. Тепловозы появились на советских железных дорогах более полувека назад по инициативе В.И. Ленина. Дизели приводят в движение тепловоз непосредственно, а с помощью электрической передачи - генераторов электрического тока и электродвигателей. На одном валу с каждым дизелем тепловоза находится генератор постоянного электрического тока. Вырабатываемый генератором электрический ток поступает в тяговые электродвигатели, находящиеся на осях тепловоза. Тепловоз сложнее электровоза и стоит дороже, зато он не требует контактной сети, тяговых подстанций. Тепловоз можно использовать везде, где только уложены железнодорожные пути, и в этом его огромное преимущество. Дизель - экономичный двигатель, запаса нефтетоплива на тепловозе хватает на долгий путь. Для перевозки крупногабаритных и тяжелых грузов построили тяжелые грузовые автомобили, где вместо бензиновых двигателей появились более мощные дизельные двигатели. Такие же двигатели работают на тракторах, комбайнах, судах. Применение этих двигателей намного облегчает работу человека. В 1897 г. немецкий инженер Р. Дизель предложил двигатель с воспламенением от сжатия, который мог бы работать не только на бензине, но и на любом другом топливе: керосине, нефти. Также двигатели назвали дизелями.

История тепловых машин уходит в далекое прошлое. Еще две с лишним тысячи лет назад, в 3 веке до н. эры, великим греческим механиком и математиком Архимедом построившим пушку, которая стреляла с помощью пара.

Сегодня в мире насчитывается сотни миллионов тепловых двигателей. Например, двигатели внутреннего сгорания устанавливают на автомобили, корабли, тракторы, моторные лодки и т. д. Наблюдение, что изменения температуры тел постоянно сопровождаются изменениями их объемов, относятся уже к отдаленной древности, тем не менее, определение абсолютной величины отношения этих изменений принадлежит только новейшему времени. До изобретения термометров о подобных определениях, разумеется, нельзя было и думать, но зато с развитием термометрии точное исследование этой связи становилось совершенно необходимым. Сверх того, в конце прошлого XVIII и в начале нынешнего XIX века накопилось множество различных явлений, побуждавших заняться тщательными измерениями расширения тел от теплоты; таковы были: необходимость поправок барометрических показаний при определении высот, определение астрономической рефракции, вопрос об упругости газов и паров, постепенно возраставшее применение металлов для научных приборов и технических целей и т. д.

Прежде всего, естественно, обратилась к определению расширения воздуха, которое по своей величине больше всего бросалось в глаза и представлялось наиболее легко измеримым. Множество физиков вскоре получило большое количество результатов, но частично довольно разноречивых. Амонтон для регулирования своего нормального термометра измерил расширение воздуха при нагревании его от 0° до 80° R и сравнительно точно определил его в 0,380 части его объема при 0°. С другой стороны, Нюге в 1705 г. получил при посредстве несколько видоизмененного прибора один раз число, вдвое большее, а другой раз -- число, даже в 16 раз большее. Ла-Гир (1708) тоже получил вместо амонтоновского числа 1,5 и даже 3,5. Гоуксби (1709) нашел число 0,455; Крюкиус (1720) -- 0,411; Полени -- 0,333; Бонн -- 0,462; Мушенбрек -- 0,500; Ламбер («Pyrometrie», стр. 47)--0,375; Делюк -- 0,372; И. Т. Мейер -- 0,3755 и 0,3656; Соссюр -- 0,339; Вандермонд, Бертолле и Монж получили (1786) -- 0,4328. Пристли, получивший для расширения воздуха значительно отклоняющееся от истинного число 0,9375, утверждал, сверх того, что кислород, азот, водород, угольная кислота, пары азотной, соляной, сернистой, плавиковой кислот и аммиака -- все они отличаются по своему расширению от воздуха. Г. Г. Шмидт («Green"s Neues Journ.», IV, стр. 379) получил для расширения воздуха число 0,3574, для кислорода 0,3213, наконец, для водорода, угольной кислоты и азота 0,4400, 0,4352, 0,4787. Морво и Дювернуа примкнули к мнению Пристли, но вообще нашли, что расширение газов не вполне пропорционально изменению температуры.

Теоретический материал

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.

Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных - волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.

Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» - «сам» и латинского «мобилис» - «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто - мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1>

Основные части теплового двигателя

В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3> Газ, расширение которого вызывает перемещение поршня, называют рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически повторяющихся процессов (циклов) расширения и сжатия.

Рисунок 1

На Рисунке 1 изображены графически процессы расширения газа (линия АВ) и сжатия до первоначального объема (линия CD). Работа газа в процессе расширения положительна (AF > 0) и численно равна площади фигуры ABEF. Работа газа при сжатии отрицательна (так как AF < 0) и численно равна площади фигуры CDEF. Полезная работа за этот цикл численно равна разности площадей под кривыми АВ и CD (закрашена на рисунке).

Наличие нагревателя, рабочего тела и холодильника принципиально необходимое условие для непрерывной циклической работы любого теплового двигателя.

Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 -- |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?

Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

Цикл Карно.

Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно -- из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V1.

Рисунок 2

Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q1. Этот процесс графически изображается изотермой (кривая АВ).

Рисунок 3

Когда объем газа становится равным некоторому значению V1"< V2, дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V2, соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС). При этом газ охлаждается до температуры T2 < T1.

Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т2, т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние -- температура его будет все время ниже чем Т1.

Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V2">V1 (изотерма CD). При этом газ отдает холодильнику некоторое количество теплоты Q2, равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V1, при этом его температура повышается до Т1 (адиабата DA). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V1, температура -- T1, давление -- p1,и цикл можно повторить вновь.

Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии UBC = -UDA, то и работы при адиабатных процессах равны: АВС = -АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ и CD). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD.

В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная QT1- |QT2|. Итак, в цикле Карно полезная работа A = QT1 - |QT2|.