Trigonometrija. Trigonometrinis ratas. Vieneto ratas. Skaičių ratas. Kas tai yra? Asmeninės informacijos apsauga

Trigonometrija.  Trigonometrinis ratas.  Vieneto ratas.  Skaičių ratas.  Kas tai yra?  Asmeninės informacijos apsauga
Trigonometrija. Trigonometrinis ratas. Vieneto ratas. Skaičių ratas. Kas tai yra? Asmeninės informacijos apsauga




















Atgal į priekį

Dėmesio! Skaidrių peržiūros yra skirtos tik informaciniams tikslams ir gali neatspindėti visų pristatymo funkcijų. Jei jus domina šis darbas, atsisiųskite pilną versiją.

Tikslas: mokyti naudoti vienetų apskritimą sprendžiant įvairius trigonometrinius uždavinius.

Mokykliniame matematikos kurse galimi įvairūs trigonometrinių funkcijų įvedimo variantai. Patogiausias ir dažniausiai naudojamas yra „skaitinių vienetų ratas“. Jo taikymas temoje „Trigonometrija“ yra labai platus.

Vieneto ratas naudojamas:

– kampo sinuso, kosinuso, liestinės ir kotangento apibrėžimai;
– rasti kai kurių skaitinio ir kampinio argumento reikšmių trigonometrinių funkcijų reikšmes;
– pagrindinių trigonometrijos formulių išvedimas;
– redukcijos formulių išvedimas;
– rasti trigonometrinių funkcijų apibrėžimo sritį ir reikšmių diapazoną;
– trigonometrinių funkcijų periodiškumo nustatymas;
– trigonometrinių funkcijų pariteto ir nelygybės nustatymas;
– didėjančių ir mažėjančių trigonometrinių funkcijų intervalų nustatymas;
– trigonometrinių funkcijų pastovaus ženklo intervalų nustatymas;
– kampų radianinis matavimas;
– atvirkštinių trigonometrinių funkcijų reikšmių radimas;
– paprasčiausių trigonometrinių lygčių sprendimas;
– paprastų nelygybių sprendimas ir kt.

Taigi studentų aktyvus, sąmoningas šio tipo vizualizacijos įvaldymas suteikia neabejotinų pranašumų įsisavinant matematikos skyrių „Trigonometrija“.

IKT naudojimas matematikos mokymo pamokose leidžia lengviau įsisavinti skaitinių vienetų ratą. Žinoma, interaktyvioji lenta turi daugybę pritaikymų, tačiau ne visose klasėse tai yra. Jeigu kalbėtume apie pristatymų panaudojimą, tai internete yra didelis pasirinkimas, kiekvienas mokytojas gali rasti tinkamiausią variantą savo pamokoms.

Kuo ypatingas mano pristatomas pristatymas?

Šis pristatymas siūlo įvairius naudojimo atvejus ir nėra skirtas tam tikros pamokos temoje „Trigonometrija“ demonstravimas. Kiekviena šio pristatymo skaidrė gali būti naudojama atskirai tiek medžiagos aiškinimo, įgūdžių ugdymo, tiek refleksijos etape. Kuriant šį pristatymą ypatingas dėmesys buvo skiriamas jo „skaitomumui“ iš toli, nes silpnaregių mokinių skaičius nuolat auga. Spalvų gama apgalvota, logiškai susijusius objektus vienija viena spalva. Pristatymas animuotas taip, kad mokytojas galėtų pakomentuoti skaidrės fragmentą, o mokinys – užduoti klausimą. Taigi šis pristatymas yra savotiškos „judančios“ lentelės. Paskutinės skaidrės nėra animuotos ir naudojamos medžiagos įvaldymui patikrinti sprendžiant trigonometrines užduotis. Skaidrėse esantis apskritimas yra kiek įmanoma supaprastintas ir yra kuo artimesnis studentų užrašų knygelėje pavaizduotam apskritimui. Manau, kad ši sąlyga yra esminė. Mokiniams svarbu susidaryti nuomonę apie vienetų ratą kaip prieinamą ir mobilią (nors ir ne vienintelę) aiškumo formą sprendžiant trigonometrinius uždavinius.

Šis pristatymas padės mokytojams supažindinti mokinius su vienetų apskritimu 9 klasės geometrijos pamokose, kai jie mokosi temą „Trikampio kraštinių ir kampų ryšiai“. Ir, žinoma, tai padės išplėsti ir pagilinti darbo su vienetų ratu įgūdžius sprendžiant trigonometrinius uždavinius vyresniųjų klasių mokiniams algebros pamokose.

3, 4 skaidrės paaiškinti vienetinio apskritimo konstrukciją; taško vietos nustatymo vienetiniame apskritime 1 ir 2 koordinačių ketvirčiuose principas; perėjimas nuo geometrinių funkcijų sinuso ir kosinuso apibrėžimų (stačiakampiame trikampyje) prie algebrinių vienetinio apskritimo.

5-8 skaidrės paaiškinkite, kaip rasti trigonometrinių funkcijų reikšmes pirmųjų koordinačių kvadranto pagrindiniams kampams.

9-11 skaidrės paaiškina funkcijų požymius koordinačių ketvirčiuose; trigonometrinių funkcijų pastovaus ženklo intervalų nustatymas.

12 skaidrė naudojamas idėjoms apie teigiamus ir neigiamus kampų reikšmes formuoti; susipažinimas su trigonometrinių funkcijų periodiškumo samprata.

13, 14 skaidrės naudojami perjungiant į radianinio kampo matą.

15-18 skaidrės nėra animuoti ir naudojami sprendžiant įvairias trigonometrines užduotis, konsoliduojant ir tikrinant medžiagos įsisavinimo rezultatus.

  1. Titulinis puslapis.
  2. Tikslų nustatymas.
  3. Vienetinio apskritimo konstravimas. Pagrindinės kampų reikšmės laipsniais.
  4. Vienetinio apskritimo kampo sinuso ir kosinuso nustatymas.
  5. Sinuso lentelės reikšmės didėjančia tvarka.
  6. Lentelės kosinuso reikšmės didėjančia tvarka.
  7. Lentelės liestinės reikšmės didėjančia tvarka.
  8. Kotangento lentelės reikšmės didėjančia tvarka.
  9. Funkciniai ženklai sin α.
  10. Funkciniai ženklai cos α.
  11. Funkciniai ženklai įdegis α Ir ctg α.
  12. Teigiamos ir neigiamos kampų vertės vienetiniame apskritime.
  13. Radianinis kampo matas.
  14. Teigiamų ir neigiamų kampų reikšmės radianais vienetiniame apskritime.
  15. Įvairūs vieneto rato variantai, skirti konsoliduoti ir patikrinti medžiagos įsisavinimo rezultatus.
Penktame amžiuje prieš Kristų senovės graikų filosofas Zenonas iš Elėjos suformulavo savo garsiąsias aporijas, iš kurių garsiausia yra „Achilo ir vėžlio“ aporija. Štai kaip tai skamba:

Tarkime, Achilas bėga dešimt kartų greičiau už vėžlį ir atsilieka nuo jo tūkstančiu žingsnių. Per tą laiką, kurio Achilui reikia nubėgti šį atstumą, vėžlys nušliaups šimtą žingsnių ta pačia kryptimi. Kai Achilas nubėga šimtą žingsnių, vėžlys šliaužia dar dešimt žingsnių ir t.t. Procesas tęsis iki begalybės, Achilas niekada nepasivys vėžlio.

Šis samprotavimas tapo logišku šoku visoms vėlesnėms kartoms. Aristotelis, Diogenas, Kantas, Hegelis, Hilbertas... Visi jie vienaip ar kitaip svarstė Zenono aporiją. Šokas buvo toks stiprus, kad " ... diskusijos tęsiasi iki šiol, mokslo bendruomenė dar nesugebėjo prieiti bendros nuomonės apie paradoksų esmę ... į problemos tyrimą įtraukta matematinė analizė, aibių teorija, nauji fizikiniai ir filosofiniai požiūriai. ; nė vienas iš jų netapo visuotinai priimtu problemos sprendimu..."[Wikipedia, "Zeno aporia". Visi supranta, kad yra kvailinami, bet niekas nesupranta, iš ko susideda apgaulė.

Matematiniu požiūriu Zenonas savo aporijoje aiškiai pademonstravo perėjimą nuo kiekybės prie . Šis perėjimas reiškia taikymą, o ne nuolatinį. Kiek suprantu, matematinis aparatas kintamiems matavimo vienetams naudoti arba dar nėra sukurtas, arba nebuvo pritaikytas Zenono aporijai. Taikydami savo įprastą logiką, mes patenkame į spąstus. Mes, dėl mąstymo inercijos, abipusei vertei taikome pastovius laiko vienetus. Iš fizinės pusės tai atrodo kaip laikas sulėtėjęs, kol visiškai sustoja tuo metu, kai Achilas pasiveja vėžlį. Jei laikas sustos, Achilas nebegali aplenkti vėžlio.

Jei apverstume savo įprastą logiką, viskas stoja į savo vietas. Achilas bėga pastoviu greičiu. Kiekviena paskesnė jo kelio atkarpa yra dešimt kartų trumpesnė nei ankstesnė. Atitinkamai, laikas, skirtas jai įveikti, yra dešimt kartų mažesnis nei ankstesnis. Jei šioje situacijoje pritaikytume „begalybės“ sąvoką, būtų teisinga sakyti „Achilas be galo greitai pasivys vėžlį“.

Kaip išvengti šių loginių spąstų? Laikykitės pastovių laiko vienetų ir neperjunkite prie abipusių vienetų. Zenono kalba tai atrodo taip:

Per tą laiką, kurio prireiks Achilui nubėgti tūkstantį žingsnių, vėžlys nuropos šimtą žingsnių ta pačia kryptimi. Per kitą laiko intervalą, lygų pirmajam, Achilas nubėgs dar tūkstantį žingsnių, o vėžlys nuropos šimtą žingsnių. Dabar Achilas aštuoniais šimtais žingsnių lenkia vėžlį.

Šis požiūris adekvačiai apibūdina tikrovę be jokių loginių paradoksų. Tačiau tai nėra visiškas problemos sprendimas. Einšteino teiginys apie šviesos greičio nenugalimą yra labai panašus į Zenono aporiją „Achilas ir vėžlys“. Dar turime studijuoti, permąstyti ir išspręsti šią problemą. Ir sprendimo reikia ieškoti ne be galo dideliais skaičiais, o matavimo vienetais.

Kita įdomi Zenono aporija pasakoja apie skraidančią strėlę:

Skraidanti strėlė yra nejudanti, nes kiekvienu laiko momentu ji yra ramybės būsenoje, o kadangi ji ilsisi kiekvienu laiko momentu, ji visada yra ramybės būsenoje.

Šioje aporijoje loginis paradoksas įveikiamas labai paprastai – pakanka paaiškinti, kad kiekvienu laiko momentu skraidanti strėlė ilsisi skirtinguose erdvės taškuose, o tai iš tikrųjų yra judėjimas. Čia reikia atkreipti dėmesį į dar vieną dalyką. Iš vienos automobilio nuotraukos kelyje neįmanoma nustatyti nei jo judėjimo fakto, nei atstumo iki jo. Norint nustatyti, ar automobilis juda, reikia dviejų nuotraukų, padarytų iš to paties taško skirtingu laiku, tačiau negalite nustatyti atstumo nuo jų. Norėdami nustatyti atstumą iki automobilio, jums reikia dviejų nuotraukų, padarytų iš skirtingų erdvės taškų vienu metu, tačiau iš jų negalite nustatyti judėjimo fakto (žinoma, vis tiek reikia papildomų duomenų skaičiavimams, trigonometrija jums padės ). Noriu atkreipti ypatingą dėmesį į tai, kad du laiko taškai ir du erdvės taškai yra skirtingi dalykai, kurių nereikėtų painioti, nes jie suteikia skirtingas tyrimo galimybes.

2018 m. liepos 4 d., trečiadienis

Vikipedijoje labai gerai aprašyti rinkinio ir kelių rinkinių skirtumai. Pažiūrėkime.

Kaip matote, „rinkinyje negali būti dviejų identiškų elementų“, tačiau jei rinkinyje yra identiškų elementų, toks rinkinys vadinamas „multisetu“. Protingos būtybės niekada nesupras tokios absurdiškos logikos. Tai kalbančių papūgų ir dresuotų beždžionių lygis, kurie neturi intelekto iš žodžio „visiškai“. Matematikai veikia kaip paprasti treneriai, skelbiantys mums savo absurdiškas idėjas.

Kadaise tiltą statę inžinieriai, bandydami tiltą, buvo valtyje po tiltu. Jei tiltas sugriuvo, vidutinis inžinierius mirė po savo kūrinio griuvėsiais. Jei tiltas atlaikė apkrovą, talentingas inžinierius pastatė kitus tiltus.

Kad ir kaip matematikai slepiasi po fraze „mink mane, aš esu namuose“, tiksliau, „matematika tiria abstrakčias sąvokas“, yra viena virkštelė, kuri jas neatsiejamai sieja su tikrove. Ši virkštelė yra pinigai. Taikykime matematinių aibių teoriją patiems matematikams.

Labai gerai mokėmės matematikos, o dabar sėdime prie kasos, išduodame atlyginimus. Taigi matematikas ateina pas mus už savo pinigus. Suskaičiuojame jam visą sumą ir išdėliojame ant savo stalo į skirtingas krūvas, į kurias dedame to paties nominalo kupiūras. Tada paimame vieną sąskaitą iš kiekvienos krūvos ir pateikiame matematikui jo „matematinį atlyginimo rinkinį“. Paaiškinkime matematikui, kad likusias sąskaitas jis gaus tik tada, kai įrodys, kad aibė be identiškų elementų nėra lygi aibei su identiškais elementais. Čia ir prasideda linksmybės.

Visų pirma, pasiteisins deputatų logika: „Tai gali būti taikoma kitiems, bet ne man! Tada jie pradės mus raminti, kad to paties nominalo banknotai turi skirtingus vekselių numerius, o tai reiškia, kad jie negali būti laikomi tais pačiais elementais. Gerai, skaičiuokime atlyginimus monetomis – ant monetų nėra skaičių. Čia matematikas pradės pašėlusiai prisiminti fiziką: skirtingos monetos turi skirtingą kiekį nešvarumų, kiekvienos monetos kristalinė struktūra ir atomų išsidėstymas savitas...

Ir dabar man kyla įdomiausias klausimas: kur yra ta linija, už kurios multiaibės elementai virsta aibės elementais ir atvirkščiai? Tokios linijos nėra – viską sprendžia šamanai, mokslas čia nė iš tolo nemeluoja.

Paziurek cia. Mes pasirenkame futbolo stadionus, kurių aikštės plotas yra toks pat. Laukų plotai vienodi – tai reiškia, kad turime multiset. Bet jei pažiūrėtume į tų pačių stadionų pavadinimus, gautume daug, nes pavadinimai skirtingi. Kaip matote, tas pats elementų rinkinys yra ir rinkinys, ir kelių rinkinys. Kuris yra teisingas? O štai matematikas-šamanas-aštrininkas iš rankovės išsitraukia kozirių tūzą ir pradeda pasakoti arba apie rinkinį, arba apie multisetą. Bet kokiu atveju jis įtikins mus, kad yra teisus.

Norint suprasti, kaip šiuolaikiniai šamanai operuoja su aibių teorija, siedami ją su realybe, pakanka atsakyti į vieną klausimą: kuo vienos aibės elementai skiriasi nuo kitos aibės elementų? Aš jums parodysiu be jokių „neįsivaizduojamų kaip viena visuma“ ar „neįsivaizduojama kaip viena visuma“.

2018 m. kovo 18 d., sekmadienis

Skaičiaus skaitmenų suma – tai šamanų šokis su tamburinu, neturintis nieko bendro su matematika. Taip, matematikos pamokose mus moko rasti skaičiaus skaitmenų sumą ir ja naudotis, bet todėl jie yra šamanai, mokyti savo palikuonis savo įgūdžių ir išminties, kitaip šamanai tiesiog išmirs.

Ar jums reikia įrodymų? Atidarykite Vikipediją ir pabandykite rasti puslapį „Skaičiaus skaitmenų suma“. Ji neegzistuoja. Matematikoje nėra formulės, pagal kurią būtų galima rasti bet kurio skaičiaus skaitmenų sumą. Juk skaičiai yra grafiniai simboliai, kuriais rašome skaičius, o matematikos kalba užduotis skamba taip: „Suraskite bet kurį skaičių grafinių simbolių sumą“. Matematikai negali išspręsti šios problemos, bet šamanai gali tai padaryti lengvai.

Išsiaiškinkime, ką ir kaip darome, kad surastume tam tikro skaičiaus skaitmenų sumą. Taigi, turėkime skaičių 12345. Ką reikia padaryti, norint rasti šio skaičiaus skaitmenų sumą? Apsvarstykime visus veiksmus eilės tvarka.

1. Užrašykite numerį ant popieriaus lapo. Ką mes padarėme? Mes konvertavome skaičių į grafinį skaičiaus simbolį. Tai nėra matematinė operacija.

2. Vieną gautą paveikslėlį supjaustome į kelias nuotraukas, kuriose yra atskiri skaičiai. Paveikslėlio iškirpimas nėra matematinis veiksmas.

3. Konvertuokite atskirus grafinius simbolius į skaičius. Tai nėra matematinė operacija.

4. Sudėkite gautus skaičius. Dabar tai yra matematika.

Skaičiaus 12345 skaitmenų suma yra 15. Tai šamanų mokomi „kirpimo ir siuvimo kursai“, kuriuos naudoja matematikai. Bet tai dar ne viskas.

Matematiniu požiūriu nesvarbu, kurioje skaičių sistemoje rašome skaičių. Taigi skirtingose ​​skaičių sistemose to paties skaičiaus skaitmenų suma bus skirtinga. Matematikoje skaičių sistema nurodoma kaip indeksas dešinėje nuo skaičiaus. Su dideliu skaičiumi 12345 nenoriu suklaidinti galvos, panagrinėkime skaičių 26 iš straipsnio apie. Parašykime šį skaičių dvejetainėje, aštuntainėje, dešimtainėje ir šešioliktainėje skaičių sistemomis. Mes nežiūrėsime į kiekvieną žingsnį pro mikroskopą, mes jau tai padarėme. Pažiūrėkime į rezultatą.

Kaip matote, skirtingose ​​skaičių sistemose to paties skaičiaus skaitmenų suma skiriasi. Šis rezultatas neturi nieko bendra su matematika. Tai tas pats, kaip jei nustatytumėte stačiakampio plotą metrais ir centimetrais, gautumėte visiškai skirtingus rezultatus.

Nulis visose skaičių sistemose atrodo vienodai ir neturi skaitmenų sumos. Tai dar vienas argumentas už tai, kad. Klausimas matematikams: kaip matematikoje yra įvardijamas tai, kas nėra skaičius? O matematikams nieko nėra, išskyrus skaičius? Galiu tai leisti šamanams, bet ne mokslininkams. Realybė yra ne tik skaičiai.

Gautas rezultatas turėtų būti laikomas įrodymu, kad skaičių sistemos yra skaičių matavimo vienetai. Juk negalime lyginti skaičių su skirtingais matavimo vienetais. Jei tie patys veiksmai su skirtingais to paties dydžio matavimo vienetais, juos palyginus, duoda skirtingus rezultatus, tai su matematika neturi nieko bendra.

Kas yra tikroji matematika? Tai yra tada, kai matematinės operacijos rezultatas nepriklauso nuo skaičiaus dydžio, naudojamo matavimo vieneto ir nuo to, kas atlieka šį veiksmą.

Užrašas ant durų Jis atidaro duris ir sako:

Oi! Ar tai ne moterų tualetas?
- Jauna moteris! Tai laboratorija, skirta sielų nedefiliniam šventumui joms kylant į dangų tirti! Halo viršuje ir rodyklė aukštyn. Koks dar tualetas?

Moteriška... Aureole viršuje ir rodyklė žemyn yra vyriškos lyties.

Jei toks dizaino meno kūrinys prieš akis blyksteli kelis kartus per dieną,

Tada nenuostabu, kad staiga savo automobilyje randate keistą piktogramą:

Asmeniškai aš stengiuosi pamatyti minus keturis laipsnius kakiojančiame žmoguje (viena nuotrauka) (kelių paveikslėlių kompozicija: minuso ženklas, skaičius keturi, laipsnių žymėjimas). Ir nemanau, kad ši mergina yra kvailė, kuri neišmano fizikos. Ji tiesiog turi stiprų grafinių vaizdų suvokimo stereotipą. Ir matematikai mus nuolat to moko. Štai pavyzdys.

1A nėra „minus keturi laipsniai“ arba „vienas a“. Tai yra „pooping man“ arba skaičius „dvidešimt šeši“ šešioliktaine tvarka. Tie žmonės, kurie nuolat dirba šioje skaičių sistemoje, skaičių ir raidę automatiškai suvokia kaip vieną grafinį simbolį.

Trigonometrija, kaip mokslas, atsirado Senovės Rytuose. Pirmuosius trigonometrinius santykius išvedė astronomai, norėdami sukurti tikslų kalendorių ir žvaigždžių orientaciją. Šie skaičiavimai buvo susiję su sferine trigonometrija, o mokykliniame kurse tiriamas plokštumos trikampio kraštinių ir kampų santykis.

Trigonometrija yra matematikos šaka, nagrinėjanti trigonometrinių funkcijų savybes ir ryšius tarp trikampių kraštinių ir kampų.

I mūsų eros tūkstantmečio kultūros ir mokslo klestėjimo laikais žinios iš Senovės Rytų pasklido į Graikiją. Tačiau pagrindiniai trigonometrijos atradimai yra arabų kalifato vyrų nuopelnas. Visų pirma, Turkmėnijos mokslininkas al-Marazwi pristatė tokias funkcijas kaip liestinė ir kotangentas ir sudarė pirmąsias sinusų, liestinių ir kotangentų verčių lenteles. Sinuso ir kosinuso sąvokas pristatė Indijos mokslininkai. Trigonometrija susilaukė daug dėmesio tokių didžiųjų antikos veikėjų kaip Euklidas, Archimedas ir Eratostenas darbuose.

Pagrindiniai trigonometrijos dydžiai

Pagrindinės skaitinio argumento trigonometrinės funkcijos yra sinusas, kosinusas, tangentas ir kotangentas. Kiekvienas iš jų turi savo grafiką: sinusą, kosinusą, tangentą ir kotangentą.

Šių dydžių verčių apskaičiavimo formulės yra pagrįstos Pitagoro teorema. Moksleiviams jis geriau žinomas formuluotėje: „Pitagoro kelnės, lygios visomis kryptimis“, nes įrodymas pateikiamas lygiašonio stačiakampio trikampio pavyzdžiu.

Sinusas, kosinusas ir kiti ryšiai nustato ryšį tarp bet kurio stačiojo trikampio smailiųjų kampų ir kraštinių. Pateikiame šių kampo A dydžių skaičiavimo formules ir atsekime ryšius tarp trigonometrinių funkcijų:

Kaip matote, tg ir ctg yra atvirkštinės funkcijos. Jei koją a įsivaizduosime kaip nuodėmės A ir hipotenuzės c sandaugą, o koją b kaip cos A * c, gausime šias liestinės ir kotangento formules:

Trigonometrinis ratas

Grafiškai ryšį tarp minėtų dydžių galima pavaizduoti taip:

Apskritimas šiuo atveju reiškia visas galimas kampo α reikšmes - nuo 0° iki 360°. Kaip matyti iš paveikslo, kiekviena funkcija įgauna neigiamą arba teigiamą reikšmę, priklausomai nuo kampo. Pavyzdžiui, nuodėmė α turės „+“ ženklą, jei α priklauso 1 ir 2 apskritimo ketvirčiams, tai yra, jis yra diapazone nuo 0 ° iki 180 °. Kai α nuo 180° iki 360° (III ir IV ketvirčiai), sin α gali būti tik neigiama reikšmė.

Pabandykime sukurti trigonometrines lenteles konkretiems kampams ir išsiaiškinkime dydžių reikšmę.

α reikšmės, lygios 30°, 45°, 60°, 90°, 180° ir pan., vadinamos ypatingais atvejais. Jų trigonometrinių funkcijų reikšmės apskaičiuojamos ir pateikiamos specialių lentelių pavidalu.

Šie kampai nebuvo pasirinkti atsitiktinai. Lentelėse esantis žymėjimas π yra radianai. Rad – kampas, kuriame apskritimo lanko ilgis atitinka jo spindulį. Ši reikšmė buvo įvesta siekiant nustatyti visuotinę priklausomybę; skaičiuojant radianais tikrasis spindulio ilgis cm neturi reikšmės.

Trigonometrinių funkcijų lentelėse esantys kampai atitinka radianų reikšmes:

Taigi, nesunku atspėti, kad 2π yra pilnas apskritimas arba 360°.

Trigonometrinių funkcijų savybės: sinusas ir kosinusas

Norint apsvarstyti ir palyginti pagrindines sinuso ir kosinuso, liestinės ir kotangento savybes, būtina nubrėžti jų funkcijas. Tai galima padaryti kreivės, esančios dvimatėje koordinačių sistemoje, forma.

Apsvarstykite lyginamąją sinuso ir kosinuso savybių lentelę:

Sinusinės bangosKosinusas
y = sinxy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, kai x = πk, kur k ϵ Zcos x = 0, kai x = π/2 + πk, kur k ϵ Z
sin x = 1, kai x = π/2 + 2πk, kur k ϵ Zcos x = 1, kai x = 2πk, kur k ϵ Z
sin x = - 1, kai x = 3π/2 + 2πk, kur k ϵ Zcos x = - 1, kai x = π + 2πk, kur k ϵ Z
sin (-x) = - sin x, t.y. funkcija nelyginėcos (-x) = cos x, t.y. funkcija lygi
funkcija yra periodinė, mažiausias periodas yra 2π
sin x › 0, kai x priklauso 1 ir 2 ketvirčiams arba nuo 0° iki 180° (2πk, π + 2πk)cos x › 0, kai x priklauso I ir IV ketvirčiams arba nuo 270° iki 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, kai x priklauso trečiajam ir ketvirtajam ketvirčiams arba nuo 180° iki 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, kai x priklauso 2 ir 3 ketvirčiams arba nuo 90° iki 270° (π/2 + 2πk, 3π/2 + 2πk)
didėja intervale [- π/2 + 2πk, π/2 + 2πk]didėja intervale [-π + 2πk, 2πk]
mažėja intervalais [π/2 + 2πk, 3π/2 + 2πk]mažėja intervalais
išvestinė (sin x)’ = cos xišvestinė (cos x)’ = - sin x

Nustatyti, ar funkcija lygi, ar ne, labai paprasta. Pakanka įsivaizduoti trigonometrinį apskritimą su trigonometrinių dydžių ženklais ir mintyse „sulenkti“ grafiką OX ašies atžvilgiu. Jei ženklai sutampa, funkcija yra lyginė, kitu atveju – nelyginė.

Radianų įvedimas ir pagrindinių sinusinių bei kosinusinių bangų savybių sąrašas leidžia mums pateikti tokį modelį:

Labai lengva patikrinti, ar formulė yra teisinga. Pavyzdžiui, jei x = π/2, sinusas yra 1, kaip ir x = 0 kosinusas. Patikrinti galima naudojant lenteles arba atsekant nurodytų reikšmių funkcijų kreives.

Tangentoidų ir kotangentoidų savybės

Tangentinių ir kotangentinių funkcijų grafikai labai skiriasi nuo sinuso ir kosinuso funkcijų. Reikšmės tg ir ctg yra viena kitos abipusės reikšmės.

  1. Y = įdegis x.
  2. Liestinė linkusi į y reikšmes, kai x = π/2 + πk, bet niekada jų nepasiekia.
  3. Mažiausias teigiamas tangentoido periodas yra π.
  4. Tg (- x) = - tg x, t.y. funkcija nelyginė.
  5. Tg x = 0, jei x = πk.
  6. Funkcija didėja.
  7. Tg x › 0, kai x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, kai x ϵ (— π/2 + πk, πk).
  9. Išvestinė (tg x)’ = 1/cos 2⁡x.

Apsvarstykite toliau pateiktą teksto kotangentoido grafinį vaizdą.

Pagrindinės kotangentoidų savybės:

  1. Y = vaikiška lovelė x.
  2. Skirtingai nuo sinuso ir kosinuso funkcijų, tangentoidėje Y gali įgyti visų realiųjų skaičių aibės reikšmes.
  3. Kotangentoidas linkęs į y reikšmes, kai x = πk, bet niekada jų nepasiekia.
  4. Mažiausias teigiamas kotangentoido periodas yra π.
  5. Ctg (- x) = - ctg x, t.y. funkcija nelyginė.
  6. Ctg x = 0, kai x = π/2 + πk.
  7. Funkcija mažėja.
  8. Ctg x › 0, kai x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, kai x ϵ (π/2 + πk, πk).
  10. Išvestinė (ctg x)’ = - 1/sin 2 ⁡x Teisingai

Mums svarbu išlaikyti jūsų privatumą. Dėl šios priežasties sukūrėme Privatumo politiką, kurioje aprašoma, kaip naudojame ir saugome jūsų informaciją. Peržiūrėkite mūsų privatumo praktiką ir praneškite mums, jei turite klausimų.

Asmeninės informacijos rinkimas ir naudojimas

Asmeninė informacija reiškia duomenis, kurie gali būti naudojami konkretaus asmens tapatybei nustatyti arba susisiekti su juo.

Jūsų gali būti paprašyta pateikti savo asmeninę informaciją bet kuriuo metu, kai susisiekiate su mumis.

Toliau pateikiami keli pavyzdžiai, kokios rūšies asmeninės informacijos galime rinkti ir kaip galime tokią informaciją naudoti.

Kokią asmeninę informaciją renkame:

  • Kai pateikiate paraišką svetainėje, galime rinkti įvairią informaciją, įskaitant jūsų vardą, telefono numerį, el. pašto adresą ir kt.

Kaip naudojame jūsų asmeninę informaciją:

  • Mūsų renkama asmeninė informacija leidžia mums susisiekti su jumis dėl unikalių pasiūlymų, akcijų ir kitų renginių bei būsimų renginių.
  • Retkarčiais galime naudoti jūsų asmeninę informaciją svarbiems pranešimams ir pranešimams siųsti.
  • Mes taip pat galime naudoti asmeninę informaciją vidiniais tikslais, pavyzdžiui, atlikti auditą, duomenų analizę ir įvairius tyrimus, siekdami tobulinti teikiamas paslaugas ir teikti rekomendacijas dėl mūsų paslaugų.
  • Jei dalyvaujate prizų traukime, konkurse ar panašioje akcijoje, mes galime naudoti jūsų pateiktą informaciją tokioms programoms administruoti.

Informacijos atskleidimas trečiosioms šalims

Mes neatskleidžiame iš jūsų gautos informacijos trečiosioms šalims.

Išimtys:

  • Jei reikia – įstatymų nustatyta tvarka, teismine tvarka, teismo procese ir (arba) remiantis viešais prašymais arba Rusijos Federacijos valdžios institucijų prašymais – atskleisti savo asmeninę informaciją. Taip pat galime atskleisti informaciją apie jus, jei nuspręsime, kad toks atskleidimas yra būtinas arba tinkamas saugumo, teisėsaugos ar kitais visuomenei svarbiais tikslais.
  • Reorganizavimo, susijungimo ar pardavimo atveju surinktą asmeninę informaciją galime perduoti atitinkamai trečiajai šaliai.

Asmeninės informacijos apsauga

Mes imamės atsargumo priemonių, įskaitant administracines, technines ir fizines, siekdami apsaugoti jūsų asmeninę informaciją nuo praradimo, vagystės ir netinkamo naudojimo, taip pat nuo neteisėtos prieigos, atskleidimo, pakeitimo ir sunaikinimo.

Jūsų privatumo gerbimas įmonės lygiu

Siekdami užtikrinti, kad jūsų asmeninė informacija būtų saugi, savo darbuotojams pranešame apie privatumo ir saugumo standartus ir griežtai vykdome privatumo praktiką.

Trigonometrinis ratas. Vieneto ratas. Skaičių ratas. Kas tai yra?

Dėmesio!
Yra papildomų
Specialiajame 555 skyriuje nurodytos medžiagos.
Tiems, kurie labai „nelabai...“
Ir tiems, kurie „labai…“)

Labai dažnai terminai trigonometrinis apskritimas, vienetinis apskritimas, skaičių apskritimas prastai suprantamas studentų. Ir visiškai veltui. Šios sąvokos yra galingas ir universalus pagalbininkas visose trigonometrijos srityse. Tiesą sakant, tai yra legalus sukčiavimo lapas! Nubraižiau trigonometrinį apskritimą ir iškart pamačiau atsakymus! Gundanti? Taigi mokykimės, būtų nuodėmė nenaudoti tokio dalyko. Be to, tai visai nėra sunku.

Norėdami sėkmingai dirbti su trigonometriniu apskritimu, turite žinoti tik tris dalykus.

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.