त्रिकोणमिति. त्रिकोणमितीय वृत्त. इकाई वृत्त. संख्या चक्र. यह क्या है? व्यक्तिगत जानकारी की सुरक्षा

त्रिकोणमिति.  त्रिकोणमितीय वृत्त.  इकाई वृत्त.  संख्या चक्र.  यह क्या है?  व्यक्तिगत जानकारी की सुरक्षा
त्रिकोणमिति. त्रिकोणमितीय वृत्त. इकाई वृत्त. संख्या चक्र. यह क्या है? व्यक्तिगत जानकारी की सुरक्षा




















पीछे की ओर आगे की ओर

ध्यान! स्लाइड पूर्वावलोकन केवल सूचनात्मक उद्देश्यों के लिए हैं और प्रस्तुति की सभी विशेषताओं का प्रतिनिधित्व नहीं कर सकते हैं। यदि आप इस कार्य में रुचि रखते हैं, तो कृपया पूर्ण संस्करण डाउनलोड करें।

लक्ष्य:विभिन्न त्रिकोणमितीय समस्याओं को हल करते समय इकाई वृत्त का उपयोग करना सिखाएं।

स्कूली गणित पाठ्यक्रम में, त्रिकोणमितीय फलनों को प्रस्तुत करने के लिए विभिन्न विकल्प संभव हैं। सबसे सुविधाजनक और अक्सर उपयोग किया जाने वाला "संख्यात्मक इकाई वृत्त" है। "त्रिकोणमिति" विषय में इसका अनुप्रयोग बहुत व्यापक है।

यूनिट सर्कल का उपयोग इसके लिए किया जाता है:

- किसी कोण की ज्या, कोज्या, स्पर्शरेखा और कोटैंजेंट की परिभाषा;
- संख्यात्मक और कोणीय तर्क के कुछ मूल्यों के लिए त्रिकोणमितीय कार्यों के मूल्यों का पता लगाना;
- बुनियादी त्रिकोणमिति सूत्रों की व्युत्पत्ति;
- कमी सूत्रों की व्युत्पत्ति;
- त्रिकोणमितीय कार्यों की परिभाषा और मूल्यों की सीमा का पता लगाना;
- त्रिकोणमितीय कार्यों की आवधिकता का निर्धारण;
- त्रिकोणमितीय कार्यों की समता और विषमता का निर्धारण;
- बढ़ते और घटते त्रिकोणमितीय कार्यों के अंतराल का निर्धारण;
- त्रिकोणमितीय कार्यों के निरंतर चिह्न के अंतराल का निर्धारण;
- कोणों का रेडियन माप;
- व्युत्क्रम त्रिकोणमितीय कार्यों के मूल्यों का पता लगाना;
- सरलतम त्रिकोणमितीय समीकरणों का समाधान;
- सरल असमानताओं को हल करना, आदि।

इस प्रकार, इस प्रकार के विज़ुअलाइज़ेशन में छात्रों की सक्रिय, सचेत महारत गणित के "त्रिकोणमिति" अनुभाग में महारत हासिल करने के लिए निर्विवाद लाभ प्रदान करती है।

गणित शिक्षण पाठों में आईसीटी के उपयोग से संख्यात्मक इकाई वृत्त में महारत हासिल करना आसान हो जाता है। बेशक, इंटरैक्टिव व्हाइटबोर्ड में अनुप्रयोगों की एक विस्तृत श्रृंखला है, लेकिन सभी कक्षाओं में यह नहीं है। यदि हम प्रस्तुतियों के उपयोग के बारे में बात करते हैं, तो इंटरनेट पर व्यापक विकल्प मौजूद है, और प्रत्येक शिक्षक अपने पाठ के लिए सबसे उपयुक्त विकल्प पा सकता है।

मैं जो प्रस्तुति प्रस्तुत कर रहा हूं उसमें क्या खास है?

यह प्रस्तुति विभिन्न उपयोग के मामलों का सुझाव देती है और इसका उद्देश्य "त्रिकोणमिति" विषय में किसी विशिष्ट पाठ का प्रदर्शन करना नहीं है। इस प्रस्तुति की प्रत्येक स्लाइड का उपयोग सामग्री को समझाने, कौशल विकसित करने और प्रतिबिंब के लिए अलग-अलग किया जा सकता है। इस प्रस्तुति को बनाते समय, लंबी दूरी से इसकी "पठनीयता" पर विशेष ध्यान दिया गया, क्योंकि कम दृष्टि वाले छात्रों की संख्या लगातार बढ़ रही है। रंग योजना पर विचार किया गया है, तार्किक रूप से संबंधित वस्तुएं एक ही रंग से एकजुट होती हैं। प्रस्तुति इस तरह से एनिमेटेड है कि शिक्षक स्लाइड के एक टुकड़े पर टिप्पणी कर सकता है और छात्र एक प्रश्न पूछ सकता है। इस प्रकार, यह प्रस्तुति एक प्रकार की "चलती" तालिका है। अंतिम स्लाइड एनिमेटेड नहीं हैं और त्रिकोणमितीय कार्यों को हल करते समय सामग्री की महारत का परीक्षण करने के लिए उपयोग की जाती हैं। स्लाइड पर वृत्त दिखने में जितना संभव हो उतना सरल बनाया गया है और छात्रों द्वारा नोटबुक पेपर पर चित्रित सर्कल के जितना संभव हो उतना करीब है। मैं इस स्थिति को मौलिक मानता हूं। त्रिकोणमितीय कार्यों को हल करते समय छात्रों के लिए यूनिट सर्कल के बारे में एक सुलभ और मोबाइल (हालांकि एकमात्र नहीं) स्पष्टता के रूप में एक राय बनाना महत्वपूर्ण है।

यह प्रस्तुति शिक्षकों को 9वीं कक्षा के ज्यामिति पाठों में "एक त्रिभुज की भुजाओं और कोणों के बीच संबंध" विषय का अध्ययन करते समय छात्रों को इकाई वृत्त से परिचित कराने में मदद करेगी। और, निश्चित रूप से, यह बीजगणित पाठों में वरिष्ठ छात्रों के लिए त्रिकोणमितीय समस्याओं को हल करते समय यूनिट सर्कल के साथ काम करने के कौशल को विस्तारित और गहरा करने में मदद करेगा।

स्लाइड 3, 4यूनिट सर्कल के निर्माण की व्याख्या कर सकेंगे; पहली और दूसरी समन्वय तिमाहियों में इकाई वृत्त पर एक बिंदु का स्थान निर्धारित करने का सिद्धांत; साइन और कोसाइन (एक समकोण त्रिभुज में) फ़ंक्शन की ज्यामितीय परिभाषाओं से यूनिट सर्कल पर बीजगणितीय परिभाषाओं में संक्रमण।

स्लाइड 5-8बताएं कि पहले निर्देशांक चतुर्थांश के मुख्य कोणों के लिए त्रिकोणमितीय कार्यों के मान कैसे ज्ञात करें।

स्लाइड 9-11समन्वित तिमाहियों में कार्यों के संकेतों की व्याख्या कर सकेंगे; त्रिकोणमितीय कार्यों के निरंतर चिह्न के अंतराल का निर्धारण।

स्लाइड 12सकारात्मक और नकारात्मक कोण मूल्यों के बारे में विचार बनाने के लिए उपयोग किया जाता है; त्रिकोणमितीय कार्यों की आवधिकता की अवधारणा से परिचित होना।

स्लाइड 13, 14रेडियन कोण माप पर स्विच करते समय उपयोग किया जाता है।

स्लाइड्स 15-18एनिमेटेड नहीं हैं और विभिन्न त्रिकोणमितीय कार्यों को हल करते समय, सामग्री में महारत हासिल करने के परिणामों को समेकित करने और जांचने में उपयोग किया जाता है।

  1. शीर्षक पेज।
  2. लक्ष्य की स्थापना।
  3. यूनिट सर्कल का निर्माण. डिग्री में कोणों का मूल मान।
  4. एक इकाई वृत्त पर एक कोण की ज्या और कोज्या का निर्धारण।
  5. आरोही क्रम में साइन के लिए तालिका मान।
  6. आरोही क्रम में कोसाइन के लिए तालिका मान।
  7. आरोही क्रम में स्पर्शरेखा के लिए तालिका मान।
  8. आरोही क्रम में कोटैंजेंट के लिए तालिका मान।
  9. कार्य चिह्न पाप α.
  10. कार्य चिह्न क्योंकि α.
  11. कार्य चिह्न टैन αऔर सीटीजी α.
  12. इकाई वृत्त पर कोणों का धनात्मक एवं ऋणात्मक मान।
  13. कोण का रेडियन माप.
  14. यूनिट सर्कल पर रेडियन में सकारात्मक और नकारात्मक कोण मान।
  15. सामग्री में महारत हासिल करने के परिणामों को समेकित करने और जांचने के लिए यूनिट सर्कल के लिए विभिन्न विकल्प।
ईसा पूर्व पाँचवीं शताब्दी में, प्राचीन यूनानी दार्शनिक ज़ेनो ऑफ़ एलिया ने अपना प्रसिद्ध एपोरिया तैयार किया, जिनमें से सबसे प्रसिद्ध "अकिलीज़ एंड द टोर्टोइज़" एपोरिया है। यहाँ यह कैसा लगता है:

मान लीजिए कि अकिलिस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। अकिलिस को इस दूरी तक दौड़ने में जितना समय लगेगा, कछुआ उसी दिशा में सौ कदम रेंगेगा। जब अकिलिस सौ कदम दौड़ता है, तो कछुआ दस कदम और रेंगता है, इत्यादि। यह प्रक्रिया अनंत काल तक जारी रहेगी, अकिलिस कछुए को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक झटका बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, हिल्बर्ट... वे सभी किसी न किसी रूप में ज़ेनो के एपोरिया पर विचार करते थे। झटका इतना जोरदार था कि " ... चर्चाएँ आज भी जारी हैं; वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार पर एक आम राय नहीं बना पाया है ... मुद्दे के अध्ययन में गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण शामिल थे ; उनमें से कोई भी समस्या का आम तौर पर स्वीकृत समाधान नहीं बन सका..."[विकिपीडिया, "ज़ेनो'स अपोरिया"। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखे में क्या शामिल है।

गणितीय दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में स्पष्ट रूप से मात्रा से संक्रमण का प्रदर्शन किया। इस परिवर्तन का तात्पर्य स्थायी के बजाय अनुप्रयोग से है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों का उपयोग करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। अपने सामान्य तर्क को लागू करने से हम एक जाल में फंस जाते हैं। हम, सोच की जड़ता के कारण, समय की निरंतर इकाइयों को पारस्परिक मूल्य पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि समय धीमा हो रहा है जब तक कि यह उस समय पूरी तरह से बंद न हो जाए जब अकिलिस कछुए को पकड़ लेता है। यदि समय रुक जाता है, तो अकिलिस कछुए से आगे नहीं निकल सकता।

यदि हम अपने सामान्य तर्क को पलट दें, तो सब कुछ ठीक हो जाता है। अकिलिस स्थिर गति से दौड़ता है। उसके पथ का प्रत्येक अगला खंड पिछले वाले से दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलीज़ कछुए को असीम रूप से जल्दी पकड़ लेगा।"

इस तार्किक जाल से कैसे बचें? समय की स्थिर इकाइयों में रहें और पारस्परिक इकाइयों पर स्विच न करें। ज़ेनो की भाषा में यह इस तरह दिखता है:

अकिलिस को एक हजार कदम चलने में जितना समय लगता है, कछुआ उसी दिशा में सौ कदम रेंगता है। पहले के बराबर अगले समय अंतराल के दौरान, अकिलिस एक और हजार कदम दौड़ेगा, और कछुआ सौ कदम रेंगेगा। अब अकिलिस कछुए से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है. प्रकाश की गति की अप्रतिरोध्यता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द टोर्टोइज़" के समान है। हमें अभी भी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना होगा। और समाधान असीमित बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया एक उड़ने वाले तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि समय के प्रत्येक क्षण में वह विश्राम में होता है, और चूँकि वह समय के प्रत्येक क्षण में विश्राम में होता है, इसलिए वह सदैव विश्राम में ही रहता है।

इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि समय के प्रत्येक क्षण में एक उड़ता हुआ तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम कर रहा है, जो वास्तव में गति है। यहां एक और बात पर ध्यान देने की जरूरत है. सड़क पर एक कार की एक तस्वीर से उसकी गति के तथ्य या उससे दूरी का पता लगाना असंभव है। यह निर्धारित करने के लिए कि कोई कार चल रही है, आपको अलग-अलग समय पर एक ही बिंदु से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे दूरी निर्धारित नहीं कर सकते। किसी कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे गति के तथ्य का निर्धारण नहीं कर सकते (बेशक, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) ). मैं जिस बात पर विशेष ध्यान आकर्षित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए, क्योंकि वे अनुसंधान के लिए अलग-अलग अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

विकिपीडिया पर सेट और मल्टीसेट के बीच अंतर को बहुत अच्छी तरह से वर्णित किया गया है। चलो देखते हैं।

जैसा कि आप देख सकते हैं, "एक सेट में दो समान तत्व नहीं हो सकते," लेकिन यदि किसी सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। समझदार प्राणी ऐसे बेतुके तर्क को कभी नहीं समझ पाएंगे। यह बोलने वाले तोतों और प्रशिक्षित बंदरों का स्तर है, जिनके पास "पूरी तरह से" शब्द से कोई बुद्धि नहीं है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, और हमें अपने बेतुके विचारों का उपदेश देते हैं।

एक बार की बात है, पुल बनाने वाले इंजीनियर पुल का परीक्षण करते समय पुल के नीचे एक नाव में थे। यदि पुल ढह गया, तो औसत दर्जे का इंजीनियर अपनी रचना के मलबे के नीचे दबकर मर गया। यदि पुल भार सहन कर सका, तो प्रतिभाशाली इंजीनियर ने अन्य पुल बनाए।

इससे कोई फर्क नहीं पड़ता कि गणितज्ञ "मेरा ध्यान रखें, मैं घर में हूं" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि, "गणित अमूर्त अवधारणाओं का अध्ययन करता है," एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह नाल ही धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश रजिस्टर पर बैठकर वेतन दे रहे हैं। तो एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसे पूरी राशि गिनते हैं और उसे अलग-अलग ढेरों में अपनी मेज पर रखते हैं, जिसमें हम एक ही मूल्यवर्ग के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "वेतन का गणितीय सेट" देते हैं। आइए गणितज्ञ को समझाएं कि उसे शेष बिल तभी प्राप्त होंगे जब वह यह साबित कर देगा कि समान तत्वों के बिना एक सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, प्रतिनिधियों का तर्क काम करेगा: "यह दूसरों पर लागू किया जा सकता है, लेकिन मुझ पर नहीं!" फिर वे हमें आश्वस्त करना शुरू कर देंगे कि एक ही मूल्यवर्ग के बिलों में अलग-अलग बिल संख्याएँ होती हैं, जिसका अर्थ है कि उन्हें एक ही तत्व नहीं माना जा सकता है। ठीक है, आइए वेतन को सिक्कों में गिनें - सिक्कों पर कोई संख्या नहीं है। यहां गणितज्ञ भौतिकी को पागलपन से याद करना शुरू कर देगा: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, क्रिस्टल संरचना और परमाणुओं की व्यवस्था प्रत्येक सिक्के के लिए अद्वितीय होती है...

और अब मेरे पास सबसे दिलचस्प सवाल है: वह रेखा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी कोई रेखा मौजूद नहीं है - सब कुछ जादूगरों द्वारा तय किया जाता है, विज्ञान यहां झूठ बोलने के करीब भी नहीं है।

यहाँ देखो। हम समान फ़ील्ड क्षेत्र वाले फ़ुटबॉल स्टेडियमों का चयन करते हैं। फ़ील्ड का क्षेत्रफल समान है - जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम इन्हीं स्टेडियमों के नाम देखें तो हमें कई मिलते हैं, क्योंकि नाम अलग-अलग हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक सेट और मल्टीसेट दोनों है। कौन सा सही है? और यहां गणितज्ञ-शमन-शार्पिस्ट अपनी आस्तीन से तुरुप का इक्का निकालता है और हमें सेट या मल्टीसेट के बारे में बताना शुरू करता है। किसी भी स्थिति में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक जादूगर सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से जोड़ते हुए, यह एक प्रश्न का उत्तर देने के लिए पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको दिखाऊंगा, बिना किसी "एक पूरे के रूप में कल्पनीय" या "एक पूरे के रूप में कल्पनीय नहीं।"

रविवार, 18 मार्च 2018

किसी संख्या के अंकों का योग डफ के साथ जादूगरों का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन यही कारण है कि वे जादूगर हैं, अपने वंशजों को अपने कौशल और ज्ञान सिखाएं, अन्यथा जादूगर बस खत्म हो जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "किसी संख्या के अंकों का योग" पृष्ठ ढूंढने का प्रयास करें। वह अस्तित्व में नहीं है. गणित में ऐसा कोई सूत्र नहीं है जिसका उपयोग किसी संख्या के अंकों का योग ज्ञात करने के लिए किया जा सके। आख़िरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन ओझा इसे आसानी से कर सकते हैं।

आइए जानें कि किसी दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, आइए हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करने की आवश्यकता है? आइए क्रम से सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिख ​​लें। हमने क्या किया है? हमने संख्या को ग्राफिकल संख्या प्रतीक में बदल दिया है। यह कोई गणितीय संक्रिया नहीं है.

2. हमने एक परिणामी चित्र को अलग-अलग संख्याओं वाले कई चित्रों में काटा। किसी चित्र को काटना कोई गणितीय क्रिया नहीं है।

3. व्यक्तिगत ग्राफ़िक प्रतीकों को संख्याओं में बदलें। यह कोई गणितीय संक्रिया नहीं है.

4. परिणामी संख्याएँ जोड़ें। अब ये गणित है.

संख्या 12345 के अंकों का योग 15 है। ये जादूगरों द्वारा पढ़ाए जाने वाले "काटने और सिलाई के पाठ्यक्रम" हैं जिनका उपयोग गणितज्ञ करते हैं। लेकिन यह बिलकुल भी नहीं है।

गणितीय दृष्टिकोण से, इससे कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में कोई संख्या लिखते हैं। इसलिए, अलग-अलग संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। बड़ी संख्या 12345 के साथ, मैं अपना सिर मूर्ख नहीं बनाना चाहता, आइए लेख से संख्या 26 पर विचार करें। आइए इस संख्या को बाइनरी, ऑक्टल, दशमलव और हेक्साडेसिमल संख्या प्रणालियों में लिखें। हम हर कदम को माइक्रोस्कोप के नीचे नहीं देखेंगे; हम पहले ही ऐसा कर चुके हैं। आइये परिणाम पर नजर डालते हैं.

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह वैसा ही है जैसे यदि आपने किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निर्धारित किया है, तो आपको पूरी तरह से अलग परिणाम मिलेंगे।

शून्य सभी संख्या प्रणालियों में एक जैसा दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है। गणितज्ञों के लिए प्रश्न: वह चीज़ कैसी है जो गणित में निर्दिष्ट संख्या नहीं है? क्या, गणितज्ञों के लिए संख्याओं के अलावा कुछ भी मौजूद नहीं है? मैं ओझाओं के लिए इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए नहीं। वास्तविकता सिर्फ संख्याओं के बारे में नहीं है।

प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणालियाँ संख्याओं के माप की इकाइयाँ हैं। आख़िरकार, हम संख्याओं की तुलना माप की विभिन्न इकाइयों से नहीं कर सकते। यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ समान क्रियाओं की तुलना करने पर अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? ऐसा तब होता है जब गणितीय ऑपरेशन का परिणाम संख्या के आकार, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें वह दरवाज़ा खोलता है और कहता है:

ओह! क्या यह महिला शौचालय नहीं है?
- युवती! यह स्वर्ग में आरोहण के दौरान आत्माओं की अनिश्चित पवित्रता के अध्ययन के लिए एक प्रयोगशाला है! शीर्ष पर हेलो और ऊपर तीर. और कौन सा शौचालय?

महिला... शीर्ष पर प्रभामंडल और नीचे तीर पुरुष हैं।

यदि डिजाइन कला का ऐसा कोई काम आपकी आंखों के सामने दिन में कई बार चमकता है,

फिर यह आश्चर्य की बात नहीं है कि आपको अचानक अपनी कार में एक अजीब आइकन मिले:

व्यक्तिगत रूप से, मैं शौच कर रहे व्यक्ति (एक चित्र) में माइनस चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की एक रचना: एक माइनस चिह्न, संख्या चार, डिग्री का एक पदनाम)। और मुझे नहीं लगता कि यह लड़की मूर्ख है जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों को समझने की एक मजबूत रूढ़ि है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है.

1ए "शून्य से चार डिग्री" या "एक ए" नहीं है। यह हेक्साडेसिमल नोटेशन में "पूपिंग मैन" या संख्या "छब्बीस" है। जो लोग लगातार इस संख्या प्रणाली में काम करते हैं वे स्वचालित रूप से एक संख्या और एक अक्षर को एक ग्राफिक प्रतीक के रूप में समझते हैं।

एक विज्ञान के रूप में त्रिकोणमिति की उत्पत्ति प्राचीन पूर्व में हुई थी। पहला त्रिकोणमितीय अनुपात खगोलविदों द्वारा सितारों द्वारा सटीक कैलेंडर और अभिविन्यास बनाने के लिए प्राप्त किया गया था। ये गणनाएँ गोलाकार त्रिकोणमिति से संबंधित हैं, जबकि स्कूल पाठ्यक्रम में वे एक समतल त्रिभुज की भुजाओं और कोणों के अनुपात का अध्ययन करते हैं।

त्रिकोणमिति गणित की एक शाखा है जो त्रिकोणमितीय कार्यों के गुणों और त्रिभुजों की भुजाओं और कोणों के बीच संबंधों से संबंधित है।

पहली सहस्राब्दी ईस्वी में संस्कृति और विज्ञान के उत्कर्ष के दौरान, ज्ञान प्राचीन पूर्व से ग्रीस तक फैल गया। लेकिन त्रिकोणमिति की मुख्य खोजें अरब खलीफा के लोगों की योग्यता हैं। विशेष रूप से, तुर्कमेन वैज्ञानिक अल-मरज़वी ने स्पर्शरेखा और कोटैंजेंट जैसे कार्यों की शुरुआत की, और साइन, स्पर्शरेखा और कोटैंजेंट के लिए मूल्यों की पहली तालिकाएँ संकलित कीं। साइन और कोसाइन की अवधारणाएँ भारतीय वैज्ञानिकों द्वारा प्रस्तुत की गईं। यूक्लिड, आर्किमिडीज़ और एराटोस्थनीज जैसी प्राचीन काल की महान हस्तियों के कार्यों में त्रिकोणमिति पर बहुत ध्यान दिया गया।

त्रिकोणमिति की मूल मात्राएँ

एक संख्यात्मक तर्क के मूल त्रिकोणमितीय कार्य साइन, कोसाइन, स्पर्शरेखा और कोटैंजेंट हैं। उनमें से प्रत्येक का अपना ग्राफ है: साइन, कोसाइन, स्पर्शरेखा और कोटैंजेंट।

इन मात्राओं के मानों की गणना के सूत्र पाइथागोरस प्रमेय पर आधारित हैं। यह स्कूली बच्चों को इस सूत्रीकरण के रूप में बेहतर ज्ञात है: "पायथागॉरियन पैंट, सभी दिशाओं में समान," क्योंकि प्रमाण एक समद्विबाहु समकोण त्रिभुज के उदाहरण का उपयोग करके दिया गया है।

साइन, कोसाइन और अन्य संबंध किसी भी समकोण त्रिभुज के न्यून कोण और भुजाओं के बीच संबंध स्थापित करते हैं। आइए कोण A के लिए इन मात्राओं की गणना के लिए सूत्र प्रस्तुत करें और त्रिकोणमितीय कार्यों के बीच संबंधों का पता लगाएं:

जैसा कि आप देख सकते हैं, tg और ctg व्युत्क्रम फलन हैं। यदि हम पैर ए को पाप ए और कर्ण सी के उत्पाद के रूप में कल्पना करते हैं, और पैर बी को कॉस ए * सी के रूप में कल्पना करते हैं, तो हमें स्पर्शरेखा और कोटैंजेंट के लिए निम्नलिखित सूत्र प्राप्त होते हैं:

त्रिकोणमितीय वृत्त

ग्राफ़िक रूप से, उल्लिखित मात्राओं के बीच संबंध को निम्नानुसार दर्शाया जा सकता है:

इस मामले में वृत्त, कोण α के सभी संभावित मानों का प्रतिनिधित्व करता है - 0° से 360° तक। जैसा कि चित्र से देखा जा सकता है, प्रत्येक फ़ंक्शन कोण के आधार पर एक नकारात्मक या सकारात्मक मान लेता है। उदाहरण के लिए, यदि α वृत्त की पहली और दूसरी तिमाही से संबंधित है, यानी यह 0° से 180° की सीमा में है, तो पाप α में "+" चिह्न होगा। α के लिए 180° से 360° (III और IV तिमाही) तक, पाप α केवल एक नकारात्मक मान हो सकता है।

आइए विशिष्ट कोणों के लिए त्रिकोणमितीय तालिकाएँ बनाने का प्रयास करें और मात्राओं का अर्थ जानें।

30°, 45°, 60°, 90°, 180° इत्यादि के बराबर α के मान विशेष मामले कहलाते हैं। उनके लिए त्रिकोणमितीय कार्यों के मूल्यों की गणना की जाती है और विशेष तालिकाओं के रूप में प्रस्तुत किया जाता है।

इन कोणों को यादृच्छिक रूप से नहीं चुना गया था। तालिकाओं में पदनाम π रेडियन के लिए है। रेड वह कोण है जिस पर किसी वृत्त के चाप की लंबाई उसकी त्रिज्या से मेल खाती है। यह मान एक सार्वभौमिक निर्भरता स्थापित करने के लिए पेश किया गया था; रेडियन में गणना करते समय, सेमी में त्रिज्या की वास्तविक लंबाई कोई मायने नहीं रखती।

त्रिकोणमितीय कार्यों के लिए तालिकाओं में कोण रेडियन मानों के अनुरूप होते हैं:

इसलिए, यह अनुमान लगाना कठिन नहीं है कि 2π एक पूर्ण वृत्त या 360° है।

त्रिकोणमितीय फलनों के गुण: ज्या और कोज्या

साइन और कोसाइन, स्पर्शरेखा और कोटैंजेंट के मूल गुणों पर विचार करने और तुलना करने के लिए, उनके कार्यों को चित्रित करना आवश्यक है। इसे द्वि-आयामी समन्वय प्रणाली में स्थित वक्र के रूप में किया जा सकता है।

साइन और कोसाइन के गुणों की तुलनात्मक तालिका पर विचार करें:

साइन लहरकोज्या
y = सिनक्सy = क्योंकि x
ओडीजेड [-1; 1]ओडीजेड [-1; 1]
पाप x = 0, x = πk के लिए, जहाँ k ϵ Zक्योंकि x = 0, x = π/2 + πk के लिए, जहां k ϵ Z
पाप x = 1, x = π/2 + 2πk के लिए, जहाँ k ϵ Zcos x = 1, x = 2πk पर, जहां k ϵ Z
पाप x = - 1, x = 3π/2 + 2πk पर, जहाँ k ϵ Zcos x = - 1, x = π + 2πk के लिए, जहां k ϵ Z
पाप (-x) = - पाप x, अर्थात फलन विषम हैcos (-x) = cos x, अर्थात फलन सम है
फ़ंक्शन आवधिक है, सबसे छोटी अवधि 2π है
पाप x › 0, x के साथ पहली और दूसरी तिमाही से संबंधित या 0° से 180° (2πk, π + 2πk)cos x › 0, x के साथ I और IV क्वार्टर से संबंधित या 270° से 90° (- π/2 + 2πk, π/2 + 2πk)
पाप x ‹ 0, x के साथ तीसरी और चौथी तिमाही से संबंधित या 180° से 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, x के साथ दूसरी और तीसरी तिमाही से संबंधित या 90° से 270° (π/2 + 2πk, 3π/2 + 2πk)
अंतराल में वृद्धि [- π/2 + 2πk, π/2 + 2πk]अंतराल पर बढ़ता है [-π + 2πk, 2πk]
अंतराल पर घटती है [π/2 + 2πk, 3π/2 + 2πk]अंतराल पर घटता जाता है
व्युत्पन्न (sin x)' = cos xव्युत्पन्न (cos x)' = - पाप x

यह निर्धारित करना कि कोई फ़ंक्शन सम है या नहीं, बहुत सरल है। त्रिकोणमितीय मात्राओं के संकेतों के साथ एक त्रिकोणमितीय वृत्त की कल्पना करना और ओएक्स अक्ष के सापेक्ष ग्राफ को मानसिक रूप से "गुना" करना पर्याप्त है। यदि चिह्न मेल खाते हैं, तो फलन सम है, अन्यथा विषम है।

रेडियन का परिचय और साइन और कोसाइन तरंगों के मूल गुणों की सूची हमें निम्नलिखित पैटर्न प्रस्तुत करने की अनुमति देती है:

यह सत्यापित करना बहुत आसान है कि सूत्र सही है। उदाहरण के लिए, x = π/2 के लिए, ज्या 1 है, जैसा कि x = 0 की कोज्या है। जाँच तालिकाओं से परामर्श करके या दिए गए मानों के लिए फ़ंक्शन वक्रों का पता लगाकर की जा सकती है।

टैंगेंजेंटोइड्स और कोटेंजेंटोइड्स के गुण

स्पर्शरेखा और कोटैंजेंट कार्यों के ग्राफ़ साइन और कोसाइन फ़ंक्शन से काफी भिन्न होते हैं। मान tg और ctg एक दूसरे के व्युत्क्रम हैं।

  1. वाई = टैन एक्स.
  2. स्पर्शरेखा x = π/2 + πk पर y के मानों की ओर प्रवृत्त होती है, लेकिन उन तक कभी नहीं पहुँचती है।
  3. स्पर्शरेखा का सबसे छोटा धनात्मक आवर्त π है।
  4. Tg (- x) = - tg x, अर्थात फलन विषम है।
  5. Tg x = 0, x = πk के लिए।
  6. कार्य बढ़ रहा है.
  7. टीजी x › 0, x ϵ (πk, π/2 + πk) के लिए।
  8. टीजी x ‹ 0, x ϵ के लिए (- π/2 + πk, πk)।
  9. व्युत्पन्न (tg x)' = 1/cos 2 ⁡x.

पाठ में नीचे कोटैंजेंटॉइड की ग्राफिक छवि पर विचार करें।

कोटैंजेंटोइड्स के मुख्य गुण:

  1. वाई = खाट एक्स.
  2. साइन और कोसाइन फ़ंक्शंस के विपरीत, स्पर्शरेखा में Y सभी वास्तविक संख्याओं के सेट के मान ले सकता है।
  3. कोटैंजेंटॉइड x = πk पर y के मान की ओर प्रवृत्त होता है, लेकिन उन तक कभी नहीं पहुंचता है।
  4. कोटैंगेंटोइड की सबसे छोटी सकारात्मक अवधि π है।
  5. Ctg (- x) = - ctg x, अर्थात फलन विषम है।
  6. सीटीजी x = 0, x = π/2 + πk के लिए।
  7. कार्य कम हो रहा है.
  8. Ctg x › 0, x ϵ (πk, π/2 + πk) के लिए।
  9. सीटीजी x ‹ 0, x ϵ (π/2 + πk, πk) के लिए।
  10. व्युत्पन्न (ctg x)' = - 1/sin 2 ⁡x सही

आपकी गोपनीयता बनाए रखना हमारे लिए महत्वपूर्ण है। इस कारण से, हमने एक गोपनीयता नीति विकसित की है जो बताती है कि हम आपकी जानकारी का उपयोग और भंडारण कैसे करते हैं। कृपया हमारी गोपनीयता प्रथाओं की समीक्षा करें और यदि आपके कोई प्रश्न हों तो हमें बताएं।

व्यक्तिगत जानकारी का संग्रहण एवं उपयोग

व्यक्तिगत जानकारी से तात्पर्य उस डेटा से है जिसका उपयोग किसी विशिष्ट व्यक्ति की पहचान करने या उससे संपर्क करने के लिए किया जा सकता है।

जब भी आप हमसे संपर्क करेंगे तो आपसे किसी भी समय आपकी व्यक्तिगत जानकारी प्रदान करने के लिए कहा जा सकता है।

नीचे कुछ उदाहरण दिए गए हैं कि हम किस प्रकार की व्यक्तिगत जानकारी एकत्र कर सकते हैं और हम ऐसी जानकारी का उपयोग कैसे कर सकते हैं।

कौन सी निजी जानकारी हम एकत्र करते हैं:

  • जब आप साइट पर कोई आवेदन जमा करते हैं, तो हम आपका नाम, टेलीफोन नंबर, ईमेल पता आदि सहित विभिन्न जानकारी एकत्र कर सकते हैं।

हम आपकी व्यक्तिगत जानकारी का उपयोग कैसे करते हैं:

  • हमारे द्वारा एकत्र की गई व्यक्तिगत जानकारी हमें अनूठे प्रस्तावों, प्रचारों और अन्य घटनाओं और आगामी कार्यक्रमों के साथ आपसे संपर्क करने की अनुमति देती है।
  • समय-समय पर, हम महत्वपूर्ण सूचनाएं और संचार भेजने के लिए आपकी व्यक्तिगत जानकारी का उपयोग कर सकते हैं।
  • हम व्यक्तिगत जानकारी का उपयोग आंतरिक उद्देश्यों के लिए भी कर सकते हैं, जैसे कि हमारे द्वारा प्रदान की जाने वाली सेवाओं को बेहतर बनाने और आपको हमारी सेवाओं के संबंध में सिफारिशें प्रदान करने के लिए ऑडिट, डेटा विश्लेषण और विभिन्न शोध करना।
  • यदि आप किसी पुरस्कार ड्रा, प्रतियोगिता या इसी तरह के प्रचार में भाग लेते हैं, तो हम ऐसे कार्यक्रमों को संचालित करने के लिए आपके द्वारा प्रदान की गई जानकारी का उपयोग कर सकते हैं।

तृतीय पक्षों को सूचना का प्रकटीकरण

हम आपसे प्राप्त जानकारी को तीसरे पक्ष को प्रकट नहीं करते हैं।

अपवाद:

  • यदि आवश्यक हो - कानून, न्यायिक प्रक्रिया के अनुसार, कानूनी कार्यवाही में, और/या सार्वजनिक अनुरोधों या रूसी संघ में सरकारी निकायों के अनुरोध के आधार पर - अपनी व्यक्तिगत जानकारी का खुलासा करने के लिए। यदि हम यह निर्धारित करते हैं कि सुरक्षा, कानून प्रवर्तन, या अन्य सार्वजनिक महत्व के उद्देश्यों के लिए ऐसा प्रकटीकरण आवश्यक या उचित है, तो हम आपके बारे में जानकारी का खुलासा भी कर सकते हैं।
  • पुनर्गठन, विलय या बिक्री की स्थिति में, हम एकत्र की गई व्यक्तिगत जानकारी को लागू उत्तराधिकारी तीसरे पक्ष को हस्तांतरित कर सकते हैं।

व्यक्तिगत जानकारी की सुरक्षा

हम आपकी व्यक्तिगत जानकारी को हानि, चोरी और दुरुपयोग के साथ-साथ अनधिकृत पहुंच, प्रकटीकरण, परिवर्तन और विनाश से बचाने के लिए - प्रशासनिक, तकनीकी और भौतिक सहित - सावधानियां बरतते हैं।

कंपनी स्तर पर आपकी गोपनीयता का सम्मान करना

यह सुनिश्चित करने के लिए कि आपकी व्यक्तिगत जानकारी सुरक्षित है, हम अपने कर्मचारियों को गोपनीयता और सुरक्षा मानकों के बारे में बताते हैं और गोपनीयता प्रथाओं को सख्ती से लागू करते हैं।

त्रिकोणमितीय वृत्त. इकाई वृत्त. संख्या चक्र. यह क्या है?

ध्यान!
अतिरिक्त भी हैं
विशेष धारा 555 में सामग्री।
उन लोगों के लिए जो बहुत "बहुत नहीं..." हैं
और उन लोगों के लिए जो "बहुत ज्यादा...")

बहुत बार शर्तें त्रिकोणमितीय वृत्त, इकाई वृत्त, संख्या वृत्तछात्रों द्वारा खराब समझा गया। और पूरी तरह व्यर्थ. ये अवधारणाएँ त्रिकोणमिति के सभी क्षेत्रों में एक शक्तिशाली और सार्वभौमिक सहायक हैं। वास्तव में, यह एक कानूनी धोखा पत्र है! मैंने एक त्रिकोणमितीय वृत्त बनाया और तुरंत उत्तर देख लिए! आकर्षक? तो आइए जानें, ऐसी चीज का इस्तेमाल न करना पाप होगा। इसके अलावा, यह बिल्कुल भी मुश्किल नहीं है।

त्रिकोणमितीय वृत्त के साथ सफलतापूर्वक काम करने के लिए, आपको केवल तीन चीजें जानने की जरूरत है।

यदि आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। त्वरित सत्यापन के साथ परीक्षण। आइए जानें - रुचि के साथ!)

आप फ़ंक्शंस और डेरिवेटिव से परिचित हो सकते हैं।