ตรีโกณมิติ. วงกลมตรีโกณมิติ วงกลมหน่วย. วงกลมตัวเลข. มันคืออะไร? การคุ้มครองข้อมูลส่วนบุคคล

ตรีโกณมิติ.  วงกลมตรีโกณมิติ  วงกลมหน่วย.  วงกลมตัวเลข.  มันคืออะไร?  การคุ้มครองข้อมูลส่วนบุคคล
ตรีโกณมิติ. วงกลมตรีโกณมิติ วงกลมหน่วย. วงกลมตัวเลข. มันคืออะไร? การคุ้มครองข้อมูลส่วนบุคคล




















กลับไปข้างหน้า

ความสนใจ! การแสดงตัวอย่างสไลด์มีวัตถุประสงค์เพื่อให้ข้อมูลเท่านั้น และอาจไม่ได้แสดงถึงคุณลักษณะทั้งหมดของการนำเสนอ หากสนใจงานนี้กรุณาดาวน์โหลดฉบับเต็ม

เป้า:สอนการใช้วงกลมหน่วยในการแก้ปัญหาตรีโกณมิติต่างๆ

ในหลักสูตรคณิตศาสตร์ของโรงเรียน มีตัวเลือกต่างๆ สำหรับการแนะนำฟังก์ชันตรีโกณมิติได้ วิธีที่สะดวกและใช้บ่อยที่สุดคือ “วงกลมหน่วยตัวเลข” การประยุกต์ใช้ในหัวข้อ "ตรีโกณมิติ" มีเนื้อหากว้างขวางมาก

วงกลมหนึ่งหน่วยใช้สำหรับ:

– คำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุม
– การค้นหาค่าของฟังก์ชันตรีโกณมิติสำหรับค่าบางค่าของอาร์กิวเมนต์เชิงตัวเลขและเชิงมุม
– ที่มาของสูตรตรีโกณมิติพื้นฐาน
– ที่มาของสูตรการลด;
– การค้นหาโดเมนของคำจำกัดความและช่วงของค่าของฟังก์ชันตรีโกณมิติ
– การกำหนดคาบของฟังก์ชันตรีโกณมิติ
– การกำหนดความเท่าเทียมกันและความคี่ของฟังก์ชันตรีโกณมิติ
– การกำหนดช่วงเวลาของฟังก์ชันตรีโกณมิติที่เพิ่มขึ้นและลดลง
– การกำหนดช่วงเวลาของเครื่องหมายคงที่ของฟังก์ชันตรีโกณมิติ
– การวัดมุมเรเดียน
– การค้นหาค่าของฟังก์ชันตรีโกณมิติผกผัน
– การแก้สมการตรีโกณมิติที่ง่ายที่สุด
– การแก้ไขอสมการง่ายๆ ฯลฯ

ดังนั้นการเรียนรู้อย่างมีสติและกระตือรือร้นของนักเรียนในการแสดงภาพข้อมูลประเภทนี้จึงให้ข้อได้เปรียบที่ไม่อาจปฏิเสธได้สำหรับการเรียนรู้วิชาคณิตศาสตร์ในส่วน "ตรีโกณมิติ"

การใช้ ICT ในบทเรียนการสอนคณิตศาสตร์ช่วยให้เชี่ยวชาญวงกลมหน่วยตัวเลขได้ง่ายขึ้น แน่นอนว่าไวท์บอร์ดแบบโต้ตอบมีการใช้งานที่หลากหลาย แต่ไม่ใช่ทุกห้องเรียนที่จะสามารถใช้งานได้ หากเราพูดถึงการใช้การนำเสนอ ก็มีตัวเลือกมากมายบนอินเทอร์เน็ต และครูทุกคนสามารถค้นหาตัวเลือกที่เหมาะสมที่สุดสำหรับบทเรียนของตนได้

มีอะไรพิเศษเกี่ยวกับการนำเสนอที่ฉันนำเสนอ?

การนำเสนอนี้แนะนำกรณีการใช้งานต่างๆ และไม่ได้มีจุดมุ่งหมายเพื่อสาธิตบทเรียนเฉพาะในหัวข้อ “ตรีโกณมิติ” แต่ละสไลด์ของงานนำเสนอนี้สามารถใช้แยกกันได้ ทั้งในขั้นตอนการอธิบายเนื้อหา การพัฒนาทักษะ และการไตร่ตรอง เมื่อสร้างงานนำเสนอนี้ มีการให้ความสนใจเป็นพิเศษกับ "ความสามารถในการอ่าน" จากระยะไกล เนื่องจากจำนวนนักเรียนที่มีสายตาเลือนรางเพิ่มขึ้นอย่างต่อเนื่อง มีการคิดโทนสีแล้ววัตถุที่เกี่ยวข้องเชิงตรรกะจะรวมเป็นสีเดียว งานนำเสนอเป็นภาพเคลื่อนไหวในลักษณะที่ครูสามารถแสดงความคิดเห็นในส่วนของสไลด์และนักเรียนสามารถถามคำถามได้ ดังนั้นการนำเสนอนี้จึงเป็นตารางที่ "เคลื่อนไหว" สไลด์สุดท้ายจะไม่เป็นภาพเคลื่อนไหวและใช้เพื่อทดสอบความเชี่ยวชาญของวัสดุไปพร้อมๆ กับการแก้โจทย์วิชาตรีโกณมิติ วงกลมบนสไลด์นั้นดูเรียบง่ายที่สุดเท่าที่จะเป็นไปได้และอยู่ใกล้กับวงกลมที่นักเรียนแสดงบนกระดาษสมุดบันทึกมากที่สุด ฉันถือว่าเงื่อนไขนี้เป็นพื้นฐาน เป็นสิ่งสำคัญสำหรับนักเรียนในการสร้างความคิดเห็นเกี่ยวกับวงกลมหน่วยในรูปแบบความชัดเจนที่เข้าถึงได้และเคลื่อนที่ได้ (แม้ว่าจะไม่ใช่เพียงรูปแบบเดียว) เมื่อแก้ไขงานวิชาตรีโกณมิติ

การนำเสนอนี้จะช่วยให้ครูแนะนำนักเรียนเกี่ยวกับวงกลมหน่วยในบทเรียนเรขาคณิตชั้นประถมศึกษาปีที่ 9 เมื่อศึกษาหัวข้อ "ความสัมพันธ์ระหว่างด้านและมุมของรูปสามเหลี่ยม" และแน่นอนว่ามันจะช่วยขยายและเพิ่มพูนทักษะในการทำงานกับวงกลมหน่วยเมื่อแก้ปัญหาตรีโกณมิติสำหรับนักเรียนรุ่นพี่ในบทเรียนพีชคณิต

สไลด์ 3, 4อธิบายการสร้างวงกลมหนึ่งหน่วย หลักการกำหนดตำแหน่งของจุดบนวงกลมหน่วยในไตรมาสพิกัดที่ 1 และ 2 การเปลี่ยนจากคำจำกัดความทางเรขาคณิตของฟังก์ชันไซน์และโคไซน์ (ในรูปสามเหลี่ยมมุมฉาก) ไปเป็นฟังก์ชันพีชคณิตบนวงกลมหน่วย

สไลด์ 5-8อธิบายวิธีค้นหาค่าของฟังก์ชันตรีโกณมิติสำหรับมุมหลักของจตุภาคพิกัดแรก

สไลด์ 9-11อธิบายสัญญาณของการทำงานในพื้นที่ประสานงาน การกำหนดช่วงเวลาของเครื่องหมายคงที่ของฟังก์ชันตรีโกณมิติ

สไลด์ 12ใช้เพื่อสร้างแนวคิดเกี่ยวกับค่ามุมบวกและลบ ทำความคุ้นเคยกับแนวคิดเรื่องคาบของฟังก์ชันตรีโกณมิติ

สไลด์ 13, 14ใช้ในการสลับไปใช้การวัดมุมเรเดียน

สไลด์ 15-18ไม่เคลื่อนไหวและใช้ในการแก้ไขงานตรีโกณมิติต่างๆ รวบรวมและตรวจสอบผลลัพธ์ของการเรียนรู้วัสดุ

  1. หน้าชื่อเรื่อง.
  2. ตั้งเป้าหมาย.
  3. การสร้างวงกลมหนึ่งหน่วย ค่าพื้นฐานของมุมเป็นองศา
  4. การหาค่าไซน์และโคไซน์ของมุมบนวงกลมหนึ่งหน่วย
  5. ค่าตารางสำหรับไซน์จากน้อยไปหามาก
  6. ค่าตารางสำหรับโคไซน์จากน้อยไปหามาก
  7. ค่าตารางสำหรับแทนเจนต์ตามลำดับจากน้อยไปมาก
  8. ค่าตารางสำหรับโคแทนเจนต์ตามลำดับจากน้อยไปมาก
  9. สัญญาณฟังก์ชั่น บาป α
  10. สัญญาณฟังก์ชั่น cos α
  11. สัญญาณฟังก์ชั่น สีแทน αและ ซีทีจี แอลฟา
  12. ค่าบวกและลบของมุมบนวงกลมหน่วย
  13. การวัดมุมเรเดียน
  14. ค่ามุมบวกและลบเป็นเรเดียนบนวงกลมหน่วย
  15. ตัวเลือกต่างๆ สำหรับวงกลมหนึ่งหน่วยสำหรับการรวมและตรวจสอบผลลัพธ์ของการเรียนรู้วัสดุ
ในศตวรรษที่ห้าก่อนคริสต์ศักราช นักปรัชญาชาวกรีกโบราณ Zeno of Elea ได้คิดค้น aporia ที่มีชื่อเสียงของเขาขึ้นมา ซึ่งที่มีชื่อเสียงที่สุดก็คือ aporia "Achilles and the Tortoise" นี่คือสิ่งที่ดูเหมือน:

สมมติว่าจุดอ่อนวิ่งเร็วกว่าเต่าสิบเท่าและตามหลังเต่าไปหนึ่งพันก้าว ในช่วงเวลาที่จุดอ่อนต้องใช้เพื่อวิ่งระยะนี้ เต่าจะคลานไปร้อยขั้นในทิศทางเดียวกัน เมื่ออคิลลีสวิ่งร้อยก้าว เต่าจะคลานไปอีกสิบก้าว ไปเรื่อยๆ กระบวนการนี้จะดำเนินต่อไปอย่างไม่มีที่สิ้นสุด อคิลลีสจะตามเต่าไม่ทัน

เหตุผลนี้สร้างความตกใจให้กับคนรุ่นต่อๆ ไป Aristotle, Diogenes, Kant, Hegel, Hilbert... พวกเขาทั้งหมดถือว่า Aporia ของ Zeno ไม่ทางใดก็ทางหนึ่ง ช็อกหนักมากจน” ... การอภิปรายยังคงดำเนินต่อไปจนถึงทุกวันนี้ ชุมชนวิทยาศาสตร์ยังไม่สามารถมีความเห็นร่วมกันเกี่ยวกับสาระสำคัญของความขัดแย้งได้ ... การวิเคราะห์ทางคณิตศาสตร์ ทฤษฎีเซต วิธีการทางกายภาพและปรัชญาใหม่ ๆ มีส่วนร่วมในการศึกษาปัญหานี้ ; ไม่มีวิธีใดที่กลายเป็นวิธีแก้ปัญหาที่เป็นที่ยอมรับโดยทั่วไป..."[วิกิพีเดีย "Aporia ของ Zeno" ทุกคนเข้าใจว่าพวกเขากำลังถูกหลอก แต่ไม่มีใครเข้าใจว่าการหลอกลวงประกอบด้วยอะไร

จากมุมมองทางคณิตศาสตร์ ฉีโนใน Aporia ของเขาแสดงให้เห็นอย่างชัดเจนถึงการเปลี่ยนจากปริมาณเป็น การเปลี่ยนแปลงนี้แสดงถึงการใช้งานแทนที่จะเป็นแบบถาวร เท่าที่ฉันเข้าใจ เครื่องมือทางคณิตศาสตร์สำหรับการใช้หน่วยการวัดแบบแปรผันยังไม่ได้รับการพัฒนา หรือไม่ได้นำไปใช้กับ Aporia ของ Zeno การใช้ตรรกะตามปกติของเราจะนำเราเข้าสู่กับดัก เนื่องจากความเฉื่อยของการคิด เราใช้หน่วยเวลาคงที่กับค่าส่วนกลับ จากมุมมองทางกายภาพ ดูเหมือนว่าเวลาจะเดินช้าลงจนกระทั่งหยุดสนิทในขณะที่ Achilles ตามทันเต่า หากเวลาหยุดลง Achilles จะไม่สามารถวิ่งเร็วกว่าเต่าได้อีกต่อไป

ถ้าเราเปลี่ยนตรรกะตามปกติ ทุกอย่างก็เข้าที่ Achilles วิ่งด้วยความเร็วคงที่ แต่ละส่วนต่อมาของเส้นทางของเขาจะสั้นกว่าส่วนก่อนหน้าสิบเท่า ดังนั้นเวลาที่ใช้ในการเอาชนะจึงน้อยกว่าครั้งก่อนถึงสิบเท่า หากเราใช้แนวคิดเรื่อง "อนันต์" ในสถานการณ์นี้ ก็คงจะถูกต้องที่จะพูดว่า "อคิลลีสจะไล่ตามเต่าอย่างรวดเร็วอย่างไม่สิ้นสุด"

จะหลีกเลี่ยงกับดักเชิงตรรกะนี้ได้อย่างไร? คงอยู่ในหน่วยเวลาคงที่และอย่าเปลี่ยนไปใช้หน่วยต่างตอบแทน ในภาษาของ Zeno มีลักษณะดังนี้:

ในเวลาที่อคิลลิสต้องวิ่งพันก้าว เต่าจะคลานไปในทิศทางเดียวกันนับร้อยขั้น ในช่วงเวลาถัดไปเท่ากับช่วงแรก อคิลลีสจะวิ่งอีกพันก้าว และเต่าจะคลานไปหนึ่งร้อยก้าว ตอนนี้อคิลลิสนำหน้าเต่าไปแปดร้อยก้าว

แนวทางนี้อธิบายความเป็นจริงได้อย่างเพียงพอโดยไม่มีความขัดแย้งทางตรรกะใดๆ แต่นี่ไม่ใช่วิธีแก้ปัญหาที่สมบูรณ์ คำกล่าวของไอน์สไตน์เกี่ยวกับความเร็วแสงที่ไม่อาจต้านทานได้นั้นคล้ายคลึงกับเรื่อง "Achilles and the Tortoise" ของ Zeno มาก เรายังต้องศึกษา คิดใหม่ และแก้ไขปัญหานี้ และต้องค้นหาวิธีแก้ปัญหาไม่ใช่ในจำนวนมากไม่สิ้นสุด แต่ต้องค้นหาในหน่วยการวัด

Aporia ที่น่าสนใจอีกประการหนึ่งของ Zeno เล่าเกี่ยวกับลูกศรบิน:

ลูกธนูที่บินอยู่นั้นไม่เคลื่อนที่ เนื่องจากมันจะอยู่นิ่งทุกช่วงเวลา และเนื่องจากมันอยู่นิ่งทุกช่วงเวลา มันจึงอยู่นิ่งอยู่เสมอ

ใน aporia นี้ ความขัดแย้งเชิงตรรกะจะเอาชนะได้ง่ายมาก - ก็เพียงพอที่จะชี้แจงว่าในแต่ละช่วงเวลาลูกศรที่บินอยู่จะหยุดนิ่ง ณ จุดต่าง ๆ ในอวกาศ ซึ่งในความเป็นจริงคือการเคลื่อนไหว ต้องสังเกตอีกประเด็นหนึ่งที่นี่ จากภาพถ่ายของรถยนต์คันหนึ่งบนท้องถนนไม่สามารถระบุข้อเท็จจริงของการเคลื่อนไหวหรือระยะทางได้ ในการตรวจสอบว่ารถยนต์กำลังเคลื่อนที่อยู่หรือไม่ คุณต้องถ่ายภาพสองภาพที่ถ่ายจากจุดเดียวกันและเวลาที่ต่างกัน แต่คุณไม่สามารถระบุระยะห่างจากรถเหล่านั้นได้ ในการกำหนดระยะทางถึงรถยนต์คุณต้องมีภาพถ่ายสองภาพที่ถ่ายจากจุดต่าง ๆ ในอวกาศ ณ จุดใดเวลาหนึ่ง แต่จากภาพถ่ายเหล่านี้คุณไม่สามารถระบุข้อเท็จจริงของการเคลื่อนไหวได้ (แน่นอนว่าคุณยังต้องการข้อมูลเพิ่มเติมสำหรับการคำนวณ ตรีโกณมิติจะช่วยคุณ ). สิ่งที่ฉันต้องการให้ความสนใจเป็นพิเศษคือจุดสองจุดในเวลาและสองจุดในอวกาศเป็นสิ่งที่ต่างกันซึ่งไม่ควรสับสน เพราะมันให้โอกาสในการวิจัยที่แตกต่างกัน

วันพุธที่ 4 กรกฎาคม 2018

ความแตกต่างระหว่างชุดและหลายชุดมีการอธิบายไว้เป็นอย่างดีในวิกิพีเดีย มาดูกัน.

ดังที่คุณเห็นว่า "ในเซตหนึ่งจะมีองค์ประกอบที่เหมือนกันไม่ได้" แต่หากมีองค์ประกอบที่เหมือนกันในชุดหนึ่ง เซตดังกล่าวจะเรียกว่า "มัลติเซต" สิ่งมีชีวิตที่มีเหตุผลจะไม่มีวันเข้าใจตรรกะที่ไร้สาระเช่นนี้ นี่คือระดับของนกแก้วพูดได้และลิงฝึกหัดที่ไม่มีสติปัญญาจากคำว่า "สมบูรณ์" นักคณิตศาสตร์ทำหน้าที่เป็นผู้ฝึกสอนธรรมดาๆ โดยสั่งสอนแนวคิดที่ไร้สาระของพวกเขาให้เราฟัง

กาลครั้งหนึ่ง วิศวกรผู้สร้างสะพานอยู่ในเรือใต้สะพานขณะทดสอบสะพาน หากสะพานพัง วิศวกรธรรมดาๆ ก็เสียชีวิตภายใต้ซากปรักหักพังที่เขาสร้างขึ้น หากสะพานสามารถรับน้ำหนักได้ วิศวกรผู้มีความสามารถก็สร้างสะพานอื่นขึ้นมา

ไม่ว่านักคณิตศาสตร์จะซ่อนอยู่เบื้องหลังวลีที่ว่า "โปรดบอกฉันหน่อย ฉันอยู่ในบ้าน" หรือ "คณิตศาสตร์ศึกษาแนวคิดเชิงนามธรรม" อย่างไร มีสายสะดือเส้นหนึ่งที่เชื่อมโยงพวกเขากับความเป็นจริงอย่างแยกไม่ออก สายสะดือนี้คือเงิน ขอให้เราใช้ทฤษฎีเซตทางคณิตศาสตร์กับนักคณิตศาสตร์เอง

เราเรียนคณิตศาสตร์มาเป็นอย่างดี และตอนนี้เรากำลังนั่งอยู่ที่เครื่องคิดเงิน แจกเงินเดือน นักคณิตศาสตร์คนหนึ่งมาหาเราเพื่อเงินของเขา เรานับจำนวนเงินทั้งหมดให้เขาแล้ววางลงบนโต๊ะของเราเป็นกองต่างๆ โดยเราใส่ธนบัตรที่มีสกุลเงินเดียวกัน จากนั้นเราจะหยิบบิลหนึ่งใบจากแต่ละกอง และมอบ "ชุดเงินเดือนทางคณิตศาสตร์" ให้กับนักคณิตศาสตร์ ให้เราอธิบายให้นักคณิตศาสตร์ฟังว่าเขาจะได้รับบิลที่เหลือก็ต่อเมื่อเขาพิสูจน์ว่าเซตที่ไม่มีสมาชิกเหมือนกันจะไม่เท่ากับเซตที่มีสมาชิกเหมือนกัน นี่คือจุดเริ่มต้นของความสนุก

ก่อนอื่น ตรรกะของเจ้าหน้าที่จะได้ผล: “สิ่งนี้ใช้ได้กับผู้อื่น แต่ไม่ใช่กับฉัน!” จากนั้นพวกเขาจะเริ่มทำให้เรามั่นใจว่าตั๋วเงินประเภทเดียวกันมีหมายเลขบิลที่แตกต่างกัน ซึ่งหมายความว่าไม่สามารถพิจารณาว่าเป็นองค์ประกอบเดียวกันได้ เอาล่ะ เรามานับเงินเดือนเป็นเหรียญกันดีกว่า - ไม่มีตัวเลขบนเหรียญ ที่นี่นักคณิตศาสตร์จะเริ่มจดจำฟิสิกส์อย่างบ้าคลั่ง เหรียญแต่ละเหรียญมีจำนวนดินต่างกัน โครงสร้างผลึกและการจัดเรียงอะตอมไม่ซ้ำกันในแต่ละเหรียญ...

และตอนนี้ฉันมีคำถามที่น่าสนใจที่สุด: เส้นตรงที่องค์ประกอบของ multiset กลายเป็นองค์ประกอบของ set และในทางกลับกันอยู่ที่ไหน? ไม่มีเส้นดังกล่าว - ทุกอย่างถูกตัดสินโดยหมอผีวิทยาศาสตร์ไม่ได้ใกล้เคียงกับการโกหกที่นี่ด้วยซ้ำ

ดูนี่. เราคัดเลือกสนามฟุตบอลที่มีพื้นที่สนามเดียวกัน พื้นที่ในทุ่งเหมือนกัน - ซึ่งหมายความว่าเรามีชุดหลายชุด แต่ถ้าเราดูชื่อสนามเดียวกันนี้ เราจะได้หลายชื่อ เพราะชื่อต่างกัน อย่างที่คุณเห็น ชุดองค์ประกอบเดียวกันนั้นเป็นทั้งเซตและมัลติเซต ข้อไหนถูกต้อง? และที่นี่นักคณิตศาสตร์ - หมอผี - นักแม่นปืนดึงเอซออกมาจากแขนเสื้อของเขาและเริ่มบอกเราเกี่ยวกับชุดหรือชุดหลายชุด ไม่ว่าในกรณีใดเขาจะโน้มน้าวเราว่าเขาพูดถูก

เพื่อทำความเข้าใจว่าหมอผียุคใหม่ดำเนินการอย่างไรกับทฤษฎีเซตโดยเชื่อมโยงกับความเป็นจริงก็เพียงพอที่จะตอบคำถามหนึ่งข้อ: องค์ประกอบของชุดหนึ่งแตกต่างจากองค์ประกอบของชุดอื่นอย่างไร ฉันจะแสดงให้คุณเห็น โดยไม่มี "สิ่งที่เป็นไปได้ว่าไม่ใช่ทั้งหมดเดียว" หรือ "ไม่สามารถเป็นไปได้ในภาพรวมเดียว"

วันอาทิตย์ที่ 18 มีนาคม 2018

ผลรวมของตัวเลขคือการเต้นรำของหมอผีกับแทมบูรีนซึ่งไม่เกี่ยวข้องกับคณิตศาสตร์เลย ใช่ ในบทเรียนคณิตศาสตร์ เราสอนให้ค้นหาผลรวมของตัวเลขแล้วนำไปใช้ แต่นั่นเป็นเหตุผลว่าทำไมพวกเขาถึงเป็นหมอผี เพื่อสอนทักษะและสติปัญญาแก่ลูกหลาน ไม่เช่นนั้นหมอผีก็จะตายไป

คุณต้องการหลักฐานหรือไม่? เปิด Wikipedia แล้วลองค้นหาหน้า "ผลรวมของตัวเลข" เธอไม่มีอยู่จริง ไม่มีสูตรในคณิตศาสตร์ที่สามารถใช้เพื่อค้นหาผลรวมของตัวเลขใดๆ ได้ ท้ายที่สุดแล้วตัวเลขคือสัญลักษณ์กราฟิกที่เราเขียนตัวเลขและในภาษาคณิตศาสตร์งานจะมีลักษณะดังนี้: "ค้นหาผลรวมของสัญลักษณ์กราฟิกที่แสดงถึงตัวเลขใดๆ" นักคณิตศาสตร์ไม่สามารถแก้ปัญหานี้ได้ แต่หมอผีสามารถทำได้ง่ายๆ

เรามาดูกันว่าเราทำอะไรและอย่างไรเพื่อหาผลรวมของตัวเลขที่กำหนด เอาล่ะ เรามีเลข 12345 กัน จะต้องทำอย่างไรจึงจะหาผลรวมของเลขตัวนี้ได้? พิจารณาขั้นตอนทั้งหมดตามลำดับ

1. เขียนหมายเลขลงบนกระดาษ เราทำอะไรไปแล้วบ้าง? เราได้แปลงตัวเลขให้เป็นสัญลักษณ์ตัวเลขแบบกราฟิก นี่ไม่ใช่การดำเนินการทางคณิตศาสตร์

2. เราตัดรูปภาพผลลัพธ์หนึ่งรูปภาพออกเป็นหลายรูปภาพที่มีตัวเลขแต่ละตัว การตัดภาพไม่ใช่การดำเนินการทางคณิตศาสตร์

3. แปลงสัญลักษณ์กราฟิกแต่ละรายการให้เป็นตัวเลข นี่ไม่ใช่การดำเนินการทางคณิตศาสตร์

4. เพิ่มตัวเลขผลลัพธ์ ตอนนี้เป็นคณิตศาสตร์

ผลรวมของตัวเลข 12345 คือ 15 นี่คือ "หลักสูตรการตัดเย็บ" ที่สอนโดยหมอผีที่นักคณิตศาสตร์ใช้ แต่นั่นไม่ใช่ทั้งหมด

จากมุมมองทางคณิตศาสตร์ ไม่สำคัญว่าเราจะเขียนตัวเลขในระบบตัวเลขใด ดังนั้นในระบบตัวเลขที่ต่างกันผลรวมของตัวเลขของตัวเลขเดียวกันจะแตกต่างกัน ในทางคณิตศาสตร์ ระบบตัวเลขจะแสดงเป็นตัวห้อยทางด้านขวาของตัวเลข ด้วยตัวเลขขนาดใหญ่ 12345 ไม่อยากหลอกหัว ลองพิจารณาเลข 26 จากบทความเกี่ยวกับกันดู ลองเขียนตัวเลขนี้ในระบบเลขฐานสอง ฐานแปด ทศนิยม และเลขฐานสิบหก เราจะไม่มองทุกขั้นตอนด้วยกล้องจุลทรรศน์ แต่เราได้ทำไปแล้ว มาดูผลลัพธ์กันดีกว่า

อย่างที่คุณเห็น ในระบบตัวเลขที่ต่างกัน ผลรวมของตัวเลขของตัวเลขเดียวกันจะแตกต่างกัน ผลลัพธ์นี้ไม่เกี่ยวข้องกับคณิตศาสตร์ เหมือนกับว่าคุณกำหนดพื้นที่ของสี่เหลี่ยมผืนผ้าเป็นเมตรและเซนติเมตร คุณจะได้ผลลัพธ์ที่แตกต่างไปจากเดิมอย่างสิ้นเชิง

ศูนย์มีลักษณะเหมือนกันในทุกระบบตัวเลขและไม่มีผลรวมของตัวเลข นี่เป็นอีกข้อโต้แย้งที่สนับสนุนความจริงที่ว่า คำถามสำหรับนักคณิตศาสตร์: สิ่งที่ไม่ใช่ตัวเลขที่กำหนดในคณิตศาสตร์เป็นอย่างไร? อะไรนะสำหรับนักคณิตศาสตร์ไม่มีอะไรอยู่เลยนอกจากตัวเลข? ฉันสามารถอนุญาตให้หมอผีทำได้ แต่ไม่ใช่สำหรับนักวิทยาศาสตร์ ความจริงไม่ใช่แค่เกี่ยวกับตัวเลขเท่านั้น

ผลลัพธ์ที่ได้ควรถือเป็นข้อพิสูจน์ว่าระบบตัวเลขเป็นหน่วยวัดของตัวเลข ท้ายที่สุดแล้ว เราไม่สามารถเปรียบเทียบตัวเลขกับหน่วยการวัดที่แตกต่างกันได้ หากการกระทำแบบเดียวกันโดยใช้หน่วยการวัดปริมาณเดียวกันต่างกันทำให้ได้ผลลัพธ์ที่แตกต่างกันหลังจากเปรียบเทียบแล้ว ก็จะไม่เกี่ยวข้องกับคณิตศาสตร์เลย

คณิตศาสตร์ที่แท้จริงคืออะไร? นี่คือเมื่อผลลัพธ์ของการดำเนินการทางคณิตศาสตร์ไม่ได้ขึ้นอยู่กับขนาดของตัวเลข หน่วยการวัดที่ใช้ และผู้ที่ดำเนินการนี้

ลงชื่อที่ประตู เขาเปิดประตูแล้วพูดว่า:

โอ้! นี่มันห้องน้ำหญิงไม่ใช่เหรอ?
- หญิงสาว! นี่คือห้องปฏิบัติการสำหรับศึกษาความบริสุทธิ์ของจิตวิญญาณที่ไม่สิ้นสุดระหว่างการขึ้นสู่สวรรค์! รัศมีอยู่ด้านบนและลูกศรขึ้น ห้องน้ำอะไรอีก?

หญิง... รัศมีบนและลูกศรล่างเป็นชาย

หากงานศิลปะการออกแบบดังกล่าวกะพริบต่อหน้าต่อตาคุณหลายครั้งต่อวัน

จึงไม่น่าแปลกใจที่คุณพบไอคอนแปลก ๆ ในรถของคุณ:

โดยส่วนตัวแล้วฉันพยายามเห็นลบสี่องศาในคนเซ่อ (ภาพเดียว) (องค์ประกอบของภาพหลายภาพ: เครื่องหมายลบ, หมายเลขสี่, การกำหนดองศา) และฉันไม่คิดว่าผู้หญิงคนนี้เป็นคนโง่ที่ไม่รู้ฟิสิกส์ เธอมีทัศนคติที่ชัดเจนในการรับรู้ภาพกราฟิก และนักคณิตศาสตร์ก็สอนเราเรื่องนี้ตลอดเวลา นี่คือตัวอย่าง

1A ไม่ใช่ "ลบสี่องศา" หรือ "หนึ่ง a" นี่คือ "คนขี้" หรือเลข "ยี่สิบหก" ในรูปแบบเลขฐานสิบหก คนเหล่านั้นที่ทำงานในระบบตัวเลขนี้อย่างต่อเนื่องจะรับรู้ตัวเลขและตัวอักษรเป็นสัญลักษณ์กราฟิกเดียวโดยอัตโนมัติ

ตรีโกณมิติเป็นวิทยาศาสตร์ที่มีต้นกำเนิดในตะวันออกโบราณ อัตราส่วนตรีโกณมิติแรกได้มาจากนักดาราศาสตร์เพื่อสร้างปฏิทินและการวางแนวที่แม่นยำโดยดวงดาว การคำนวณเหล่านี้เกี่ยวข้องกับตรีโกณมิติทรงกลม ในขณะที่ในหลักสูตรของโรงเรียน การคำนวณเหล่านี้จะศึกษาอัตราส่วนของด้านและมุมของรูปสามเหลี่ยมระนาบ

ตรีโกณมิติเป็นสาขาหนึ่งของคณิตศาสตร์ที่เกี่ยวข้องกับคุณสมบัติของฟังก์ชันตรีโกณมิติและความสัมพันธ์ระหว่างด้านและมุมของรูปสามเหลี่ยม

ในช่วงรุ่งเรืองของวัฒนธรรมและวิทยาศาสตร์ในคริสต์สหัสวรรษที่ 1 ความรู้แพร่กระจายจากตะวันออกโบราณไปยังกรีซ แต่การค้นพบตรีโกณมิติที่สำคัญคือข้อดีของคนในศาสนาอิสลามแห่งอาหรับ โดยเฉพาะอย่างยิ่งนักวิทยาศาสตร์ชาวเติร์กเมนิสถานอัล-มาราซวีได้แนะนำฟังก์ชันต่างๆ เช่น แทนเจนต์และโคแทนเจนต์ และรวบรวมตารางค่าแรกสำหรับไซน์ แทนเจนต์ และโคแทนเจนต์ แนวคิดเรื่องไซน์และโคไซน์ได้รับการแนะนำโดยนักวิทยาศาสตร์ชาวอินเดีย ตรีโกณมิติได้รับความสนใจอย่างมากในผลงานของบุคคลสำคัญในสมัยโบราณเช่น Euclid, Archimedes และ Eratosthenes

ปริมาณพื้นฐานของตรีโกณมิติ

ฟังก์ชันตรีโกณมิติพื้นฐานของอาร์กิวเมนต์ตัวเลข ได้แก่ ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ แต่ละคนมีกราฟของตัวเอง: ไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์

สูตรในการคำนวณค่าของปริมาณเหล่านี้จะขึ้นอยู่กับทฤษฎีบทพีทาโกรัส เด็กนักเรียนเป็นที่รู้จักกันดีในสูตร: "กางเกงพีทาโกรัสมีความเท่าเทียมกันในทุกทิศทาง" เนื่องจากการพิสูจน์ให้ไว้โดยใช้ตัวอย่างของสามเหลี่ยมหน้าจั่วหน้าจั่ว

ความสัมพันธ์ไซน์ โคไซน์ และความสัมพันธ์อื่นๆ สร้างความสัมพันธ์ระหว่างมุมแหลมและด้านของสามเหลี่ยมมุมฉากใดๆ ให้เรานำเสนอสูตรสำหรับการคำนวณปริมาณเหล่านี้สำหรับมุม A และติดตามความสัมพันธ์ระหว่างฟังก์ชันตรีโกณมิติ:

อย่างที่คุณเห็น tg และ ctg เป็นฟังก์ชันผกผัน ถ้าเราจินตนาการว่าขา a เป็นผลคูณของ sin A และด้านตรงข้ามมุมฉาก c และขา b เป็น cos A * c เราจะได้สูตรต่อไปนี้สำหรับแทนเจนต์และโคแทนเจนต์:

วงกลมตรีโกณมิติ

ความสัมพันธ์ระหว่างปริมาณดังกล่าวสามารถแสดงได้ดังนี้:

ในกรณีนี้ วงกลมแสดงถึงค่าที่เป็นไปได้ทั้งหมดของมุม α - ตั้งแต่ 0° ถึง 360° ดังที่เห็นจากรูป แต่ละฟังก์ชันจะใช้ค่าลบหรือบวกขึ้นอยู่กับมุม ตัวอย่างเช่น sin α จะมีเครื่องหมาย "+" หาก α อยู่ในควอเตอร์ที่ 1 และ 2 ของวงกลม นั่นคือ มันอยู่ในช่วงตั้งแต่ 0° ถึง 180° สำหรับ α ตั้งแต่ 180° ถึง 360° (ไตรมาส III และ IV) sin α สามารถเป็นค่าลบได้เท่านั้น

เรามาลองสร้างตารางตรีโกณมิติสำหรับมุมเฉพาะและค้นหาความหมายของปริมาณกัน

ค่า α เท่ากับ 30°, 45°, 60°, 90°, 180° และอื่นๆ เรียกว่ากรณีพิเศษ ค่าของฟังก์ชันตรีโกณมิติสำหรับฟังก์ชันเหล่านี้จะถูกคำนวณและนำเสนอในรูปแบบของตารางพิเศษ

มุมเหล่านี้ไม่ได้ถูกเลือกโดยการสุ่ม คำว่า π ในตารางเป็นชื่อเรเดียน แรดคือมุมที่ความยาวของส่วนโค้งของวงกลมสอดคล้องกับรัศมี ค่านี้ถูกนำมาใช้เพื่อสร้างการพึ่งพาสากลเมื่อคำนวณเป็นเรเดียนความยาวจริงของรัศมีเป็นซม. ไม่สำคัญ

มุมในตารางสำหรับฟังก์ชันตรีโกณมิติสอดคล้องกับค่าเรเดียน:

ดังนั้น จึงไม่ยากที่จะเดาว่า 2π เป็นวงกลมที่สมบูรณ์หรือ 360°

คุณสมบัติของฟังก์ชันตรีโกณมิติ: ไซน์และโคไซน์

ในการพิจารณาและเปรียบเทียบคุณสมบัติพื้นฐานของไซน์และโคไซน์ แทนเจนต์และโคแทนเจนต์ จำเป็นต้องวาดฟังก์ชันของพวกมัน ซึ่งสามารถทำได้ในรูปแบบของเส้นโค้งที่อยู่ในระบบพิกัดสองมิติ

พิจารณาตารางเปรียบเทียบคุณสมบัติของไซน์และโคไซน์:

คลื่นไซน์โคไซน์
y = บาปxy = cos x
โอดีซ [-1; 1]โอดีซ [-1; 1]
บาป x = 0 สำหรับ x = πk โดยที่ k ϵ Zcos x = 0 สำหรับ x = π/2 + πk โดยที่ k ϵ Z
sin x = 1 สำหรับ x = π/2 + 2πk โดยที่ k ϵ Zcos x = 1 ที่ x = 2πk โดยที่ k ϵ Z
sin x = - 1 ที่ x = 3π/2 + 2πk โดยที่ k ϵ Zcos x = - 1 สำหรับ x = π + 2πk โดยที่ k ϵ Z
sin (-x) = - sin x นั่นคือฟังก์ชันเป็นเลขคี่cos (-x) = cos x นั่นคือฟังก์ชันเป็นเลขคู่
ฟังก์ชันเป็นแบบคาบ คาบที่เล็กที่สุดคือ 2π
sin x › 0 โดยที่ x อยู่ในควอเตอร์ที่ 1 และ 2 หรือตั้งแต่ 0° ถึง 180° (2πk, π + 2πk)cos x › 0 โดยที่ x อยู่ในควอเตอร์ I และ IV หรือตั้งแต่ 270° ถึง 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0 โดยที่ x อยู่ในควอเตอร์ที่สามและสี่ หรือตั้งแต่ 180° ถึง 360° (π + 2πk, 2π + 2πk)cos x ‹ 0 โดยที่ x อยู่ในควอเตอร์ที่ 2 และ 3 หรือตั้งแต่ 90° ถึง 270° (π/2 + 2πk, 3π/2 + 2πk)
เพิ่มขึ้นในช่วงเวลา [- π/2 + 2πk, π/2 + 2πk]เพิ่มขึ้นในช่วงเวลา [-π + 2πk, 2πk]
ลดลงในช่วงเวลา [π/2 + 2πk, 3π/2 + 2πk]ลดลงตามช่วงเวลา
อนุพันธ์ (บาป x)’ = cos xอนุพันธ์ (cos x)’ = - sin x

การพิจารณาว่าฟังก์ชันเป็นเลขคู่หรือไม่นั้นทำได้ง่ายมาก ก็เพียงพอแล้วที่จะจินตนาการถึงวงกลมตรีโกณมิติที่มีสัญลักษณ์ของปริมาณตรีโกณมิติและ "พับ" กราฟทางจิตใจที่สัมพันธ์กับแกน OX ถ้าสัญญาณตรงกัน ฟังก์ชันจะเป็นเลขคู่ ไม่เช่นนั้นจะเป็นเลขคี่

การแนะนำเรเดียนและการแสดงรายการคุณสมบัติพื้นฐานของคลื่นไซน์และโคไซน์ทำให้เราสามารถนำเสนอรูปแบบต่อไปนี้:

มันง่ายมากที่จะตรวจสอบว่าสูตรถูกต้อง ตัวอย่างเช่น สำหรับ x = π/2 ไซน์คือ 1 เช่นเดียวกับโคไซน์ของ x = 0 การตรวจสอบสามารถทำได้โดยการปรึกษาตารางหรือโดยการติดตามเส้นโค้งของฟังก์ชันสำหรับค่าที่กำหนด

คุณสมบัติของแทนเจนต์ซอยด์และโคแทนเจนต์ซอยด์

กราฟของฟังก์ชันแทนเจนต์และโคแทนเจนต์แตกต่างอย่างมีนัยสำคัญจากฟังก์ชันไซน์และโคไซน์ ค่า tg และ ctg เป็นส่วนกลับของกันและกัน

  1. Y = สีแทน x
  2. แทนเจนต์มีแนวโน้มที่จะมีค่า y ที่ x = π/2 + πk แต่ไม่เคยไปถึงค่าเหล่านั้น
  3. คาบบวกที่น้อยที่สุดของแทนเจนตอยด์คือ π
  4. Tg (- x) = - tg x เช่น ฟังก์ชันเป็นเลขคี่
  5. Tg x = 0 สำหรับ x = πk
  6. ฟังก์ชั่นกำลังเพิ่มขึ้น
  7. Tg x › 0 สำหรับ x ϵ (πk, π/2 + πk)
  8. Tg x ‹ 0 สำหรับ x ϵ (— π/2 + πk, πk)
  9. อนุพันธ์ (tg x)’ = 1/cos 2 ⁡x

พิจารณาภาพกราฟิกของโคแทนเจนตอยด์ด้านล่างในข้อความ

คุณสมบัติหลักของโคแทนเจนตอยด์:

  1. Y = เปล x
  2. ต่างจากฟังก์ชันไซน์และโคไซน์ในแทนเจนต์อยด์ Y สามารถใช้ค่าของเซตของจำนวนจริงทั้งหมดได้
  3. โคแทนเจนตอยด์มีแนวโน้มที่จะมีค่า y ที่ x = πk แต่ไม่เคยไปถึงค่าเหล่านั้น
  4. คาบบวกที่น้อยที่สุดของโคแทนเจนตอยด์คือ π
  5. Ctg (- x) = - ctg x นั่นคือฟังก์ชันเป็นเลขคี่
  6. CTG x = 0 สำหรับ x = π/2 + πk
  7. ฟังก์ชันกำลังลดลง
  8. Ctg x › 0 สำหรับ x ϵ (πk, π/2 + πk)
  9. Ctg x ‹ 0, สำหรับ x ϵ (π/2 + πk, πk)
  10. อนุพันธ์ (ctg x)’ = - 1/sin 2 ⁡x ถูกต้อง

การรักษาความเป็นส่วนตัวของคุณเป็นสิ่งสำคัญสำหรับเรา ด้วยเหตุนี้ เราจึงได้พัฒนานโยบายความเป็นส่วนตัวที่อธิบายถึงวิธีที่เราใช้และจัดเก็บข้อมูลของคุณ โปรดตรวจสอบหลักปฏิบัติด้านความเป็นส่วนตัวของเราและแจ้งให้เราทราบหากคุณมีคำถามใดๆ

การรวบรวมและการใช้ข้อมูลส่วนบุคคล

ข้อมูลส่วนบุคคลหมายถึงข้อมูลที่สามารถใช้เพื่อระบุหรือติดต่อบุคคลใดบุคคลหนึ่งโดยเฉพาะ

คุณอาจถูกขอให้ให้ข้อมูลส่วนบุคคลของคุณได้ตลอดเวลาเมื่อคุณติดต่อเรา

ด้านล่างนี้คือตัวอย่างบางส่วนของประเภทของข้อมูลส่วนบุคคลที่เราอาจรวบรวมและวิธีที่เราอาจใช้ข้อมูลดังกล่าว

เราเก็บรวบรวมข้อมูลส่วนบุคคลอะไรบ้าง:

  • เมื่อคุณส่งใบสมัครบนเว็บไซต์ เราอาจรวบรวมข้อมูลต่าง ๆ รวมถึงชื่อ หมายเลขโทรศัพท์ ที่อยู่อีเมลของคุณ ฯลฯ

เราใช้ข้อมูลส่วนบุคคลของคุณอย่างไร:

  • ข้อมูลส่วนบุคคลที่เรารวบรวมช่วยให้เราสามารถติดต่อคุณเพื่อรับข้อเสนอ โปรโมชั่น และกิจกรรมอื่น ๆ และกิจกรรมที่กำลังจะเกิดขึ้น
  • ในบางครั้ง เราอาจใช้ข้อมูลส่วนบุคคลของคุณเพื่อส่งประกาศและการสื่อสารที่สำคัญ
  • เรายังอาจใช้ข้อมูลส่วนบุคคลเพื่อวัตถุประสงค์ภายใน เช่น การดำเนินการตรวจสอบ การวิเคราะห์ข้อมูล และการวิจัยต่างๆ เพื่อปรับปรุงบริการที่เรามีให้และให้คำแนะนำเกี่ยวกับบริการของเราแก่คุณ
  • หากคุณเข้าร่วมการจับรางวัล การประกวด หรือการส่งเสริมการขายที่คล้ายกัน เราอาจใช้ข้อมูลที่คุณให้ไว้เพื่อจัดการโปรแกรมดังกล่าว

การเปิดเผยข้อมูลแก่บุคคลที่สาม

เราไม่เปิดเผยข้อมูลที่ได้รับจากคุณต่อบุคคลที่สาม

ข้อยกเว้น:

  • หากจำเป็น - ตามกฎหมาย ขั้นตอนการพิจารณาคดี ในการดำเนินการทางกฎหมาย และ/หรือตามคำขอสาธารณะหรือคำขอจากหน่วยงานของรัฐในสหพันธรัฐรัสเซีย - ให้เปิดเผยข้อมูลส่วนบุคคลของคุณ เรายังอาจเปิดเผยข้อมูลเกี่ยวกับคุณหากเราพิจารณาว่าการเปิดเผยดังกล่าวมีความจำเป็นหรือเหมาะสมเพื่อความปลอดภัย การบังคับใช้กฎหมาย หรือวัตถุประสงค์ที่สำคัญสาธารณะอื่น ๆ
  • ในกรณีของการปรับโครงสร้างองค์กร การควบรวมกิจการ หรือการขาย เราอาจถ่ายโอนข้อมูลส่วนบุคคลที่เรารวบรวมไปยังบุคคลที่สามที่รับช่วงต่อที่เกี่ยวข้อง

การคุ้มครองข้อมูลส่วนบุคคล

เราใช้ความระมัดระวัง - รวมถึงการบริหารจัดการ ทางเทคนิค และทางกายภาพ - เพื่อปกป้องข้อมูลส่วนบุคคลของคุณจากการสูญหาย การโจรกรรม และการใช้งานในทางที่ผิด รวมถึงการเข้าถึง การเปิดเผย การเปลี่ยนแปลง และการทำลายโดยไม่ได้รับอนุญาต

การเคารพความเป็นส่วนตัวของคุณในระดับบริษัท

เพื่อให้มั่นใจว่าข้อมูลส่วนบุคคลของคุณปลอดภัย เราจะสื่อสารมาตรฐานความเป็นส่วนตัวและความปลอดภัยให้กับพนักงานของเรา และบังคับใช้หลักปฏิบัติด้านความเป็นส่วนตัวอย่างเคร่งครัด

วงกลมตรีโกณมิติ วงกลมหน่วย. วงกลมตัวเลข. มันคืออะไร?

ความสนใจ!
มีเพิ่มเติม
วัสดุมาตราพิเศษ 555
สำหรับผู้ที่ "ไม่ค่อย..." มากนัก
และสำหรับผู้ที่ “มากๆ…”)

เงื่อนไขบ่อยมาก วงกลมตรีโกณมิติ วงกลมหน่วย วงกลมตัวเลขนักเรียนไม่เข้าใจ และไร้ประโยชน์อย่างสมบูรณ์ แนวคิดเหล่านี้เป็นผู้ช่วยที่ทรงพลังและเป็นสากลในทุกด้านของตรีโกณมิติ อันที่จริงนี่คือเอกสารโกงทางกฎหมาย! ฉันวาดวงกลมตรีโกณมิติแล้วเห็นคำตอบทันที! ยั่วยวน? ดังนั้นมาเรียนรู้กัน มันจะเป็นบาปหากไม่ใช้สิ่งนั้น นอกจากนี้ยังไม่ใช่เรื่องยากเลย

เพื่อที่จะทำงานกับวงกลมตรีโกณมิติได้สำเร็จ คุณต้องรู้เพียงสามสิ่งเท่านั้น

หากคุณชอบเว็บไซต์นี้...

ฉันมีเว็บไซต์ที่น่าสนใจอีกสองสามแห่งสำหรับคุณ)

คุณสามารถฝึกแก้ตัวอย่างและค้นหาระดับของคุณ การทดสอบด้วยการยืนยันทันที มาเรียนรู้กันเถอะ - ด้วยความสนใจ!)

คุณสามารถทำความคุ้นเคยกับฟังก์ชันและอนุพันธ์ได้