Свойства строительных и отделочных материалов. Свойства строительных материалов

Свойства строительных и отделочных материалов. Свойства строительных материалов
Свойства строительных и отделочных материалов. Свойства строительных материалов

Огнестойкость

Теплоемкость

Звукопроницаемость

Огнеупорность

Упругость

Звукопроводность

Относительная плотность

Ударная вязкость

Звукоизоляция

Открытая пористость

Химические свойства

Истираемость

Предел огнестойкости

Физические свойства

Истинная плотность

Плотность

Щелочестойксоть

Водостойкость строительного материала – это способность материала сохранять свою проектную прочность при насыщении водой. Степень снижения прочности строительного материала под действием воды называется коэффициентом размягчения. Материалы, имеющие коэффициент выше 0,8 считаются водостойкими и могут применяться в воде или в местах с повышенной влажностью. Водостойкость строительных материалов – очень важный показатель именно для тех материалов, которые используются в воде или во влажных условиях. Некоторые материалы при насыщении водой могут увеличивать свои показатели по прочности, это обусловлено, прежде всего, химическим взаимодействием компонентов. Например, при насыщении водой цемент может превратиться в цементный камень. Водостойкость характеризуется коэффициентом размягчения kp = Rв/Rс, где Rв - прочность материала насыщенного водой, а Rс - прочность сухого материала. Меняется kp от 0 (размокающие глины) до 1 (металлы).

Водопоглощение строительного материала – это способность материала впитывать и удерживать влагу. Измеряется водопоглощение отношением объема или массы впитанной влаги к объему или массе строительного материала:

w m = (m 2 -m 1)/m 1 *100%,

w v = m 2 -m 1 /V*100%

Где
m 2 - масса материала в насыщенном водой состоянии, кг;
m 1 - масса материала в сухом состоянии, кг;
V - объем материала в естественном состоянии, м 3 .

Существует масса примеров, когда влаги в материале больше чем самого материала. Это происходит в том случае, когда удельный вес материала меньше плотности воды.

Практически всегда избыточное водопоглощение приводит к избыточному наличию воды в стройматериале, что ведет к изменению очень важных качеств строительного материала, таких как прочность и теплопроводность.

Влагоотдача строительного материала – это способность материала отдавать влагу, находящуюся в порах. Так, например, штукатурные растворы, отдавая лишнюю влагу, существенно изменяют свои показатели по прочности, стеновые пенобетонные блоки впитывают влагу из растворов, а потом отдают ее в атмосферу. Чем выше влажность воздуха и меньше температура, тем хуже происходит влагоотдача. Измеряется влагоотдача в процентах влаги, отдаваемой стройматериалом при среднестатистической относительной влажности воздуха 60% и температуре +20 °С.

Влажность строительного материала – величина, характеризующаяся количеством воды, находящимся в материале. Практически всегда повышенная влажность стройматериалов отрицательно влияет на качество. Так, например, увеличение влажности некоторых видов утеплителя всего на несколько процентов, ухудшают их теплозащитные свойства на порядок. Мокрый пеноблок или даже кирпич значительно теряют свои показатели по прочности и т.д. Влажность стройматериалов измеряется отношением массы воды, находящейся в стройматериале в период замера к нормативной массе сухого материала.

Водопроницаемость строительного материала – это свойство материала пропускать воду под давлением. Измеряется водопроницаемость количеством воды, прошедшей в течении одного часа через строительный материал площадью 1 кв. м. и толщиной 1 м при постоянном давлении 1МПа. Водопроницаемость строительного материала тем больше, чем больше пор в его структуре. Стройматериалы, не имеющие пор, а так же материалы которые имеют закрытые поры, например, специальный бетон, относятся к водонепроницаемым материалам. Водопроницаемость характеризуется коэффициентом фильтрации kф=Vв*а/, где kф=Vв - количество воды, м³, проходящей через стенку площадью S = 1 м², толщиной а = 1 м за время t = 1ч при разности гидростатического давления на границах стенки p1 - p2 = 1 м вод. ст. Строительные материалы по своей водонепроницаемости характеризуются марками W2; W4; W8; W10; W12. Чем ниже коэффициент фильтрации kф, тем выше марка по водонепроницаемости.

Воздухостойкость строительных материалов – это способность материала выдерживать многократные насыщения водой и высыхание без значительных изменений физического состояния стройматериала. Разные строительные материалы по разному «переносят» многократное намокание и высыхание. Чаще всего этот процесс вызывает деформацию, потерю прочности и как итог потерю несущей способности строительной конструкции. Для повышения воздухостойкости строительные материалы покрывают гидрофобными составами или вводят в их состав гидрофобизаторы.

Газостойкость строительных материалов – свойство материала сохранять свои основные характеристики при контакте с газами, находящимися в окружающей среде, такими как, например, углеводород.

Гигроскопичность строительных материалов – способность материалов впитывать водяной пар из воздуха. Существует огромное количество строительных материалов, которые способны впитывать в себя значительное количество водяного пара. К таким материалам относятся: дерево, пенобетон, теплоизоляционные материалы и т.д. Строительные материалы с повышенной гигроскопичностью при полном насыщении водой теряют свои свойства, а так же могут изменять геометрические размеры. Для защиты строительных материалов от насыщения водяными парами применяют водоотталкивающие защитные составы.

Звукопоглощение строительных материалов – способность материала поглощать звук или снижать его уровень при прохождении через материал. Эта способность строительных материалов в первую очередь зависит от толщины, пористости материала и многослойности материала. Чем больше пор в материале, тем выше его способность поглощать звук. Звукопоглощение строительных материалов принято оценивать коэффициентом звукопоглощеният. е. отношением энергии, поглощенной материалом, к общему количеству падающей энергии в единицу времени. За единицу звукопоглощения условно принимают звукопоглощение 1 м 2 открытого окна. Коэффициент звукопоглощения может изменяться в пределах от 0 до 1. Если звукопоглощение равно 0, то звук полностью отражается от строительного материала. Если же этот коэффициент приближается к 1 то звук полностью поглощается материалом. Согласно нормативным показателям СНиП стройматериалы, имеющие коэффициент звукопоглощения не менее 0,4 при частоте 1000 Гц, могут относиться к звукопоглощающим материалам. Коэффициент звукопоглощения определяется практическим способом в акустической трубе и подсчитывается по формуле: А(зв)=Е(погл)/Е(пад)

А(зв) - коэффициент звукопоглощения;

Е(погл) - поглощённая звуковая волна;

Е(пад) - падающая звуковая волна;

Табл. Сравнительные показатели коэффициента звукопоглощения строительных материалов

Наименование стройматериала

Коэффициент звукопоглощения при 1000 Гц

Деревянная стена

0,06-0,1

Кирпичная стена

0,032

Бетонная стена

0,015

Минеральная вата

0,45-0,95

Звукопроницаемость строительных материалов – способность материалов пропускать через свою толщу звуковую волну. Характеризуется звукопроницаемость строительных материалов коэффициентом звукопроницаемости, который показывает относительное уменьшение силы звука при прохождении его через толщу строительного материала. Звукопроницаемость практически является отрицательным свойством строительных материалов. Например, коэффициент звукопроницаемости деревянной перегородки толщиной 2,5 см равен 0,65, а бетонной стены такой же толщины – 0,11.

Звукопроводность строительных материалов – это способность тех или иных материалов пропускать звуки и шумы через свою толщу. Хорошими проводниками звука считаются строительные материалы большой плотности и прочности. Материалы, имеющие большое количество воздушных пор плохо передают звук и шум. Силу звука измеряют в децибе­лах (дБ). А звукопроводность строительных материалов характеризуется коэффициентом звукопроводности (t = Iпр /Iпад ) который равен отношению прошедшего через материал звука к падающему.

Звукоизоляция строительных материалов – это величина и характеризует процесс отражения звука каким-либо материалом. В связи с разной природой возникновения звуковых волн, различают звукоизоляцию от воздушного шума, это когда источник возникновения шума не связан с ограждающей конструкцией физически и и изоляцию от ударного шума, когда между источником и ограждающей конструкцией имеется контакт, например, стук молотка по стене. В СНиП нормируемым показателем звукоизоляции является индекс изоляции воздушного шума I в, дБ. Его определяют формуле, как средневзвешенное значение звукоизоляции конструкции в диапазоне частот от 100 до 5000 Гц в третьоктавных полосах частот. Величина R w также определяет средневзвешенную звукоизоляцию конструкции в том же диапазоне частот, но по несколько иной методике. Разница между I в и R w составляет 2 дБ, т.е. R w = I в + 2 дБ. Звукоизоляция строительных материалов и конструкций зависит от пористости материала, его толщины, наличия в материале или конструкциях отверстий и примыканий к другим конструкциям.

Истираемость строительных материалов – свойство материалов сопротивляться истирающим воздействиям. Истираемость определяется лабораторным путем на образцах. Характеристика истираемости строительных материалов указывает на стойкость материала к износу и оценивается потерей массы материала относительно ее плотности или же уменьшением толщины материала. Чем хуже истираемость строительного материала, тем он более износостоек. Облицовочнные строительные материалы делятся на 5 групп по показателям истираемости: первая группа – гранит, кварциты;

вторая группа – мрамор, плотные базальты;

третья группа – рыхлые базальты и мрамор;

четвертая группа – цветные мраморы, травентины, известняки;

пятая группа – рыхлые известняки.

Истинная плотность строительных материалов - это масса единицы объёма материала в абсолютно плотном состоянии. ρ =m/Va, где Va объём в плотном состоянии. [ρ] = г/см³; кг/м³; т/м³. Способы истинной плотности лабораторные: предварительно высушенную пробу измельчают в порошок, объём определяют в пикнометре (он равен объёму вытесненной жидкости).

Износ строительных материалов - свойство материала сопротивляться одновременно воздействию истирающих и ударных нагрузок. Износ определяют лабораторным путем в барабане со стальными шарами или без них.

Качество строительных материалов - это совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям, в том числе и нормативным соответствии с его назначением.

Красящая способность – это свойства пигментов ЛКМ при смешивании с другими пигментами передавать свой цвет. Относительную красящую способность ЛКМ определяют лабораторным путем в соответствии с ГОСТ, или визуальным методом путем сравнивая образцов.

Кислотостойкость строительных материалов – способность материалов сохранят свои основные качества и характеристики под воздействием кислот.

Коррозионная стойкость строительных материалов – это свойство материала сохранять свои основные качества под агрессивным воздействием внешней среды. Коррозия бывает биологическая, химическая и электрохимическая. Наиболее распространенное коррозийное проявление – это старение стройматериалов под действием воздействие ультрафиолетового излучения и перепад температур и влажности воздуха.

Механические свойства строительных материалов – это твердость, пластичность, жесткость предел прочности при сжатии, растяжении и изгибе.

Морозостойкость строительных материалов – это свойство строительного материала, определяющее способность выдерживать многократное замораживание и размораживание, без проявления явных отклонений от нормы качества. Хорошими морозостойкими свойствами обладают строительные материалы, имеющие показатели с низким водопоглощением. Для определения марки стройматериала по морозостокойсти циклы попеременного замораживания производят в пределах от минус 20 °C до плюс 20 °C. Показатель морозостойкости строительных материалов обозначаются символами F 100; F 25; F 50.. F 500, где цифрами показано число циклов замораживания и оттаивания.

Таб. Морозостойкость строительных материалов в зависимости от водопоглощения и предела прочности при разрыве

Материал

Водопо глощение, %

Плот­ ность,

г/см 3

R разр, МПа

Морозостойкость, количество циклов

К ирпич керамический

8...15

1,6...1,9

0,9. .3,5

15...50

Бетон ячеистый

40...60

0,5...1,2

0,078... 1

15...75

Бетон легкий

0,8...1,8

0,8..3,2

25.. .400

Бетон тяжелый

3...10

2,2...2,5

0,8. .3,2

50...500

Асбестоцемент

20...25

1,6...1,8

10..15

50...100

Насыпная плотность строительных материалов - это масса единицы объёма насыпных рыхлых зернистых или волокнистых материалов.

Огнестойкость строительных материалов – это способность материалов сохранять свои основные характеристики под действием высоких температур. По степени огнестойкости строительные материалы делятся на: сгораемые (пластмассы, дерево, кровельные битумные материалы и т.д.), трудносгораемые и несгораемые.

Огнеупорность строительных материалов – это способность материала не терять своих основных качеств (не деформироваться, не расплавляться, не трескаться и т.п.) при длительном воздействии высоких температур. По своей огнеупорности строительные материалы делятся на легкоплавкие, тугоплавкие (до 1580°C), огнеупорные (выше 1580 °C).

Относительная плотность строительных материалов – это отношение общего объема твердого вещества в строительном материале ко всему объему материала или отношение средней плотности материала к ее истинной плотности.

Открытая пористость строительных материалов – это свойство строения материалов, когда поры сообщаются с окружающей средой и между собой. Так, например, при погружении материала с открытыми порами в воду, они должны заполниться водой. Открытые поры увеличивают проницаемость и снижают морозостойкость.

Предел огнестойкости строительных материалов – это продолжительность сопротивления строительного материала или строительной конструкции (в часах) воздействию высоких температур до исчерпания ее несущей или ограждающей способности, а так же потерей своих основных качеств. Наступление предела огнестойкости характеризуется так же повышением температуры в любой точке строительной конструкции более чем 220 °С от начальной температуры конструкции.

Плотность строительных материалов – одна из основных характеристик материала, которая определяется как отношение отношением массы к объему строительного материала (кг/кв.м.).

р 0 = m/V 1

где m - масса материала, кг;
V 1 - объем материала в естественном состоянии, м 3 .

Различают истинную и среднюю плотность строительных материалов. Средняя плотность стройматериала - это отношение его массы ко всему объему, включая поры. Истинная плотность - это отношение массы материала к объему без учета пустот и пор.

Табл. Примеры истинной и средней плотности строительных материалов

Материал

Плотность, кг/м 3

Истинная плотность

Средняя плотность

Сталь строительная

7850-7900

7800-7850

Гранит

2700-2800

2600-2700

Известняк

2400-2600

1800-2400

Керамический кирпич

2600-2700

1600-1900

Тяжелый бетон

2600-2900

1800-2500

Поропласты

1000-1200

20-100


Пористость строительных материалов - это показатель заполнения материала порами (пустотами, наполненными воздухом)

Пористость материала измеряется в процентах и рассчитывается по формуле:

П = (1-р 0 /р)*100%,

где р 0 -средняя плотность материала, кг/м 3 ;
р- истинная плотность материала, кг/м 3 .

Чем больше пор в строительном материале, тем больше проявляет свои теплоизоляционные качества.

Прочность строительных материалов – свойство строительного материала сопротивляться разрушению под действием внешних и внутренних сил. Прочность оценивается таким показателем как предел прочности. Для хрупких строительных материалов, таких как кирпич или бетон, основной прочностной характеристикой является предел прочности при сжатии. Для металлических материалов более важной считается прочность при изгибе и растяжении.

Предел прочности строительных материалов - отношение разрушающей нагрузки Р(Н) к площади сечения образца F (см2). Предел прочности строительных материалов устанавливается лабораторным путем. Строительные материалы в зависимости от предела прочности делятся на марки и классы. Марки записываются в кгс/см², а классы - в МПа. Класс характеризует гарантированную прочность.

Релаксация строительного материала - свойство материала самопроизвольно снижать напряжения при условии, что начальная ее величина деформации зафиксирована жесткими связями и остается неизменной. При релаксации напряжений может измениться характер начальной деформации, например из упругой постепенно перейти в необратимую, при этом изменения размеров не происходит.

Технологические свойства строительных материалов – это скорость твердения, теплоустойчивость, скорость высыхания, удобоукладываемость.

Теплопроводность строительных материалов - это способность материала передавать тепло через толщу строительного материала или строительной многослойной конструкции. Теплопроводность строительного материала зависит от многих показателей и прежде всего от структуры и наличия воздушных пор и наличием влаги в материале. Теплопроводность строительного материала измеряется количеством тепла, передающимся через материал толщиной в 1 м, площадью 1 кв.м. за 1 час при разнице температур в 1 °C.

Теплоёмкость строительных материалов - это то количество тепла, которое необходимо сообщить 1 кг материала, чтобы повысить его температуру на 1 °C. С повышением влажности возрастает теплоёмкость материалов.

Упругость строительных материалов – свойство материалов после снятия нагрузки принимать свою первоначальную форму и размеры.

Ударная вязкость строительных материалов - свойство материала сопротивляться ударным нагрузкам. Ударная вязкость строительных материалов устанавливается экспериментальным путем в лабораторных условиях.

Укрывистость ЛКМ – способность ЛКМ делать одноцветную поверхность, уменьшать контраст между предыдущим слоем и последующим. Количественно укрывистость выражают в граммах краски, необходимой для того, чтобы сделать невидимым цвет закрашиваемой поверхности площадью один квадратный метр.

Твердость строительных материалов – свойство материала оказывать сопротивление проникновению в него другого материала. Показатели твердости выводят экспериментальным путем. Показатели твердости, полученные разными способами (например, «вдавливанием» и «царапанием») нельзя сравнивать между собой.

Химическая стойкость строительных материалов – это способность материалов сопротивляться действию агрессивной среды и другим воздействиям на химическом уровне, способность противостоять химическим реакциям, приводящим к потере основных качеств материала.

Физические свойства строительных материалов – это общепринятые свойства материалов: плотность, влажность, теплопроводность и т.п.

Щелочестойкость строительных материалов – свойство материалов сохранять свои основные качества при воздействии на них щелочей. В строительстве наибольшей щелочной агрессивностью считаются каустическая сода и растворы едкого калия.

В настоящее время номенклатура строительных материалов весьма многообразна. Для одинаковых конструкций или их элементов могут применяться различные материалы. Выбрать лучший и наиболее дешевый не всегда легко. К стеновым материалам, например, относятся: лесоматериалы, кирпич, природный камень, бетон и железобетон, саман и т.д. Однако для конкретных целей должен быть выбран материал, наиболее удовлетворяющий функциональному назначению стены (жилое помещение, производственный цех, склад, инженерное сооружение и т.п.), а также экономическим требованиям.

При выборе материала необходимо учитывать его способность реагировать на отдельные или взятые в совокупности факторы – механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и др. Эта способность материала реагировать на указанные факторы называется его свойствами.

Рациональное использование строительных материалов возможно лишь при условии знания его физических, механических, химических, технологических и художественно-декоративных свойств.

Физическое состояние строительных материалов достаточно полно характеризуется средней и истинной плотностью, а также пористостью. Известно, что большинство строительных материалов имеет пористое строение, исключение составляют стекло, металлы и некоторые другие. Отношение массы тела или вещества в естественном состоянии вместе с пустотами и порами ко всему занимаемому ими объёму принято называть средней плотностью в отличие от истинной плотности, представляющей собой отношение массы к объему, когда объем сводится к точке, в которой и определяется плотность тела или вещества без учета имеющихся в них пустот и пор.

Для сыпучих материалов существует понятие «насыпная плотность» - это отношение массы зернистых и порошкообразных материалов ко всему занимаемому ими объему, включая и пространство между частицами. Единицы этих величин: грамм на кубический сантиметр (г/см 3), килограмм на литр (кг/л), тонна на кубический метр (т/м 3), килограмм на кубический метр (кг/м 3). В технике в основном, пользуются единицей килограмм на кубический метр (кг/м 3). Показатели плотности строительных материалов служат косвенной оценкойих пористости, водопоглощения, морозостойкости, теплопроводности и прочности.

Обычно определяют весовое или объемное водопоглощения, представляющие собой отношения разности между весами водонасыщенного и сухого образцов к весу или объему сухого образца, соответственно.

Пористость материала оценивается относительной величиной, показывающей, какую часть объема материала занимают внутренние поры. Она колеблется в широких пределах – от 0 до 98%.

Пористость может быть открытой и закрытой. Открытые поры наиболее опасны – они сообщаются с окружающей средой и между собой, что позволяет им наполняться водой в условиях насыщения. А это приводит к увеличению водопоглощения и, как следствие, к снижению прочности и морозостойкости, увеличению теплопроводности и водопроницаемости. Правда, открытая пористость улучшает звукопоглощающие свойства материала.

Некоторые строительные материалы (кирпич, цемент, бетон, лесоматериалы и др.) обладают гигроскопичностью, т. е. способностью поглощать водяной пар из воздуха в результате адсорбции и капиллярной конденсации. Увеличение гигроскопической влажности материала приводит к ухудшению его основных свойств, о чем говорилось выше.

Изменение прочности материала в результате водонасыщения оценивается коэффициентом размягчения – отношением прочности материала, насыщенного водой, к прочности сухого материала. Данный коэффициент характеризует водостойкость материала и он изменяется от 1 (металлы и др.) до 0 (размокшая глина).

Водопроницаемость – это свойство материала пропускать через себя воду под давлением. Она оценивается коэффициентом фильтрации , равном количеству воды, м 3 , проходящей через пластину материала площадью в 1 м 2 , толщиной в 1 м за 1 час при разности гидростатического давления на границах пластины в 1 м водяного столба. С целью уменьшения водопроницаемости строители применяют более плотные материалы с закрытой, замкнутой пористостью или защищают конструкции гидроизоляционными материалами.

Способность материала пропускать через свои трещины и поры при наличии разности давления газ или пар называют газо- или паропроницаемостью. К некоторым материалам предъявляются требования полной газонепроницаемости, например, к материалам газохранилищ. А вот стеновые материалы, наоборот, должны обладать определенной проницаемостью. Стена должна «дышать», т.е. через нее должна осуществляться естественная вентиляция. Однако, для защиты теплоизоляции от увлажнения стены и перекрытия со стороны влажных помещений должны защищаться от проникновения пара.

Многие пористые органические и неорганические строительные материалы при увлажнении набухают, т.е. увеличиваются в размерах, а при высыхании – уменьшаются. Происходит так называемая усадка или усушка. Многократное увлажнение и высыхание зачастую приводит к разрушению в результате усталости пористых материалов.

Очень важной физической характеристикой ряда строительных материалов является их морозостойкость. Это способность материала в водонасыщенном состоянии выдерживать определенное количество чередующихся циклов замораживания и оттаивания.

Морозостойкость строительных материалов в значительной мере зависит от пористости, плотности и водостойкости. Кровельные, стеновые и другие материалы в конструкциях и отделках зданий и сооружений в условиях эксплуатации подвергаются водонасыщению и замораживанию. При переходе воды в лед происходит ее расширение примерно на 9%, что приводит к разрушению стенок пор материала. Многократное замораживание и оттаивание способно иногда в короткий срок вывести конструкцию из строя. Повысить морозостойкость можно за счет улучшения структуры материала, снижением пористости, исключением водонасыщения и др.

К теплотехническим свойствам строительных материалов относятся: теплопроводность, теплоемкость, огнеупорность, огнестойкость, коэффициент линейного температурного расширения.

Теплопроводность – это свойство материала пропускать через свою толщу тепловой поток от одной поверхности к другой. Для таких материалов как теплоизоляционные, стеновые и некоторые другие теплопроводность является одним из основных показателей их качества. Теплопроводность пористых материалов зависит в первую очередь от показателя пористости и ее характера – открытая, закрытая, сквозная, сообщающаяся. На величину теплопроводности оказывают влияние влажность, температура и, конечно, природа самого материала, т.е. его вещественный состав. Теплопроводность оценивается коэффициентом теплопроводности - Вт/(м 0 С). Вот несколько примеров, коэффициент теплопроводности меди равен 403 Вт/(м 0 С), а у стали уже только 58, у тяжелого бетона - !,5, легкого бетона – 0,5, у минеральной ваты – 0,08 и т.д. Самая низкая теплопроводность у воздуха – 0,023.

Теплоёмкость это способность материала поглощать тепло. Она оценивается удельной теплоёмкостью – количеством тепла необходимого для нагрева 1 кг материала на 1 0 С.

Огнеупорность – свойство материала противостоять, не расплавляясь и не деформируясь, длительному воздействию высоких температур (от 1580 0 С и выше). Огнеупорные материалы применяют для внутренней футеровки промышленных печей. Тугоплавкие материалы размягчаются при температуре выше 1350 0 С.

Огнестойкость – способность материала сохранять физико-механические свойства при пожаре в течение определенного времени. Она зависит от способности материалов гореть. По этой характеристике строительные материалы делятся на: несгораемые (кирпич, бетон, металлы и др.), трудносгораемые (фибролит; некоторые стеклопластики; древесина, пропитанная огнезащитными составами и др.), сгораемые (древесина, битум, пластики и др.).

Коэффициент линейного температурного расширения характеризует способность материала деформироваться при изменении температуры. Различные коэффициенты линейного расширения компонентов конгломерата или композиционных материалов могут привести к их разрушению. Во избежание растрескивания сооружений большой протяженности их разрезают на температурные швы.

К механическим свойствам строительных материалов относятся их прочностные и деформативные характеристики, твердость и истираемость.

Прочность – способность материала сопротивляться внешним или внутренним нагрузкам без разрушения. Она оценивается пределом прочности при конкретном виде деформирования (сжатие, растяжение, изгиб, кручение и др.) и равна отношению разрушающей силы к первоначальной площади поперечного сечения (единица измерения Па или МПа). Прочность материала зависит от многочисленных факторов: плотности, пористости, структуры, влажности, формы и размеров образцов, скорости нагружения и др.

Деформативность материалов это свойство изменять свои размеры и форму под действием внешней нагрузки или внутренних напряжений.

Деформации могут быть упругими (обратимыми) и пластичными (необратимыми, остаточными). Упругость это свойство материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки. Пластичностью твердого тела называют его способность изменять форму и размеры под действием нагрузки и сохранять образовавшуюся форму и размеры после снятия нагрузки.

Твердостью называют способность материала сопротивляться проникновению в него другого более твердого тела. Она определяется структурой материала. При выборе материалов для полов, дорожных покрытий и в ряде других случаев необходимо знать их твердость. От твердости зависит истираемость материалов.

19.08.2009 | ООО «Stroy-City» | 39274 просмотров

Сегодня на рыке строительных смесей и материалов представлено большое количество различной продукции как отечественных, так и зарубежных производителей. Как правило, все производители для описания технических характеристик своих товаров используют терминологию, которая порой не всегда понятна для рядовых граждан. В описании свое продукции производители обычно рекламируют те свойства строительных материалов, которые выгодно их отличают перед остальными, или используют характеристик, которые дают преимущества в их использовании. Для того, что вы могли более свободно ориентироваться в терминологии свойств строительных материалов мы решили более подробно раскрыть описание основных характеристик, которые используют производители для своей продукции.

Основными свойствами строительных смесей и материалов являются их физические, химические, технологические и механические свойства.

Свойства любого строительного материала на прямую зависят от его состава, поэтому в начале перечисляется состав и используются термины о его строение. Для правильного понимания свойств строительных материалов нужно знать их химический, минеральный и фазовый составы.

Химический состав
Показывает, характеризует процентное содержание в материале химических элементов или оксидов, позволяет судить о некоторых свойствах материалов - механической прочности, огнестойкости, биостойкости и т.д.

Минеральный состав
Показывает, какие минералы и в каком количестве содержатся в каменном материале или в вяжущем веществе. Например, искусственный минерал трехкальциевый силикат (3СаО.SiO2) содержится в портландцементе в количестве 45…..60 %, причем при большем его содержании твердение цемента ускоряется и повышается прочность цементного камня.

Фазовый состав
Указывает на содержание в материале фаз, т.е. частей, однородных по химическому составу и физическим свойствам и отделенных друг от друга поверхностям раздела. Например, основными фазами клинкера портландцемента является алит, белит, целит и алюмоферитная фаза. В пористомматериале выделяют твердые вещества, образующие стенки пор, и сами поры, заполненные воздухом, водой. Если вода замерзает, то образовавшийся в порах лед изменяет теплотехнические, механические и другие свойства материала, вызывает в нем большие внутренние напряжение следствии увеличения объема замерзающей в порах воды. Фазовый состав материала и фазовые переходы воды в нем оказывают влияние на все свойства и поведение материала при эксплуатации. Материалы, представленные одной фазой, называют гомогенными, а двумя и более - гетерогенными.

Строение материала характеризует его структурой и текстурой.

Структура - внутреннее строение материла, обусловленное формой, размерами, взаимными расположениями составляющих его частиц, пор, капилляров, взаимными расположением составляющих его частиц, пор, капилляров, поверхностей раздела фаз, микротрещин и других структурных элементов. В зависимости от структуры различают материалы изотропные - обладающие одинаковыми свойствами во всех направлениях (затвердевшие бетоны и строительные растворы, керамические материалы), или анизотропные , свойства которых различны в разных направлениях (железобетон, древесина, волокнистые материалы).

Текстура - строение, обусловленное относительным расположением и распределением составных частей материала в занимаемом им пространстве. Текстура бывает слоистая, массивная, полосчатая, пористая и др.

В большинстве своем строительные материалы имеют пористую текстуру. Их подразделяют на мелкопористые, размеры пор, которых определяются сотыми и тысячными долями миллиметра до 1…2 мм. Мелкопористыми материалами являются затвердевшие строительные растворы и бетоны, керамика, ряд камней, а крупнопористыми пено - и газобетоны, газостекло, пороплатсы и др. Крупные поры (до сантиметра) называют пустотами, к ним относят и пространства между кусками и зернами рыхлых материалов.

Различают макро- и микроструктуру материала. Макроструктура - структура, видимая невооруженным глазом или при небольшом увеличении; она бывает конгломератная (характерна для бетонов), ячеистая (газо- и пенобетоны, ячеистые пластмассы), волокнистая (древесина, стеклопластики), мелкопористая (ряд керамических материалов), слоистая (текстолит, бумопласт), рыхлозернистая (порошкообразные и зернистые материалы).

Микроструктура - структура, видимая в оптический или электронный микроскоп. Применительно, например, к строительному цементному раствору по микроструктуре можно судить о минеральном составе, количестве расположении основных фаз в цементном камне, поровом строении, размере, расположении и количестве микропор, особенностям контактного слоя между заполнителем цементным камнем.

По физическому состоянию все вещества подразделяются на твердые, жидкие, газообразные и плазму. В штукатурных и малярных работах используют материалы, которые находятся в твердом или жидком состоянии.

Твердым телом называется всякое тело, имеющее определенную форму. Так, к твердым телам относят металлы, камни, лед, воск, битум, стекло и др. Твердые тела могут находится в кристаллическом (гранит, металлы, лед) и аморфном (воск, стекло, эбонит) состояниях.

Кристаллические тела имеют упорядоченное взаимное расположение образующих их частиц - атомов и молекул, а аморфное хаотичное их расположение. Кристаллические вещества обладают характерными свойствами переходить из твердого состояния в жидкое при определенной, постоянной для данного вещества, температуре. Эта температура называется температурой плавления, равна температуре отвердения (каждое расплавленное вещество при охлаждении вновь отвердевает). Аморфные вещества не имеют четко выраженной температуры плавления и отвердевания, при нагревании они постепенно размягчаются и переходят в жидкое состояние.

Твердые материалы , используемые в штукатурных и молярных работах, бывают сыпучими и кумовыми.

Жидкость агрегатное состояние вещества, сочетающее в себе черты твердого состояния (сохранение объема, определенная прочность на разрыв) и газообразного (изменчивость формы).

В процессе работы штукатуры и маляры имеют дело не только с твердыми и жидкими веществами, но и с так называемыми коллоидно-дисперсными системами и растворами, различными смесями составами.

Дисперсные системы - образования из двух или большего числа фаз (тел) с сильно развитой поверхностью раздела между ними. В дисперсных системах одна из фаз - дисперсная фаза - распределена в виде мелких частиц (кристалликов, капель, пузырьков) в другой фазе - дисперсионной среде - газе, жидкости или твердом теле. Дисперсность - характеристика размеров твердых частиц и капель жидкости (чем меньше частицы, тем больше дисперсность). На практике в качестве дисперсных систем, размер частиц которых более 0,1 мкм, используют суспензии, эмульсии, коллоиды. Грубодисперсные системы (суспензии, эмульсии, порошки, пена) неустойчивы; чрезмерное измельчение порошков ведет к их слипанию (коагуляции).

Суспензия - система, в которой частицы твердой дисперсной фазы взвешены в жидкой дисперсионной среде. К таким системам относятся готовые к применению краски, являющиеся суспензиями пигментов и наполнителей в связующих веществах и растворителях, шпаклевки, подмазочные пасты.

Суспензия - система, в которой частицы твердой дисперсной фазы взвешены в жидкой дисперсионной среде. К таким системах относятся готовые к применению краски, являющиеся суспензиями пигментов и наполнителей в связующих веществах и растворителях, шпатлевки.

Эмульсии - система, состоящая из двух не растворяющихся друг в друге жидкостей, одна из которых (дисперсная фаза) распределена в другой (дисперсной среде).

В суспензиях и эмульсиях частицы дисперсной фазы стремятся к седиментации, т.е. к осаждению. В дополнение к этому они могут коагулировать, сцепляться под действием молекулярных сил.

Коллоиды - промежуточных системы между истинными растворами и грубодисперсными системами. Жидкие коллоиды - золи, твердые студенистые - гели. Гелеобразование - одно из важнейших свойств коллоидных систем. Гели образуются в результате действия молекулярных сил сцепления между коллоидными частицами. Образование гелей имеет значение для объяснения процессов твердения и свойств цементного камня и полимерных материалов. Ячеистая структура геля удерживает значительное количество жидкостей дисперсионной среды. Под действием механических усилий многие гели способны переходить в золи, т.е. разжижаться, это явление называется тикстропией и проявляется оно при вибрировании бетонных, растворных и других смесей.

Коллоиды способны к набуханию, при этом они увеличиваются в объеме. Животные клеи, белок, крахмал, мыло - коллоиды, которые при длительном соприкосновении с водой образуют коллоидные растворы (золи). В отличие от грубодисперсных систем коллоидные растворы стойки к седиментации, обладают свечением в проходящем свете и передвижением частиц к электродам при пропускании электротока.

Истинный раствор - молекулярно - дисперсная гомогенная (однородная) система переменного состава из двух и более компонентов. Раствор называется истинным потому, что вещества действительно и самопроизвольно растворяются в подходящем растворителе с образованием гомогенной системы. Истинные растворы устойчивы в течение длительного времени. С истинным раствором маляр имеет дело всякий раз, когда растворяет в воде кристаллы медного купороса, квасцов, каустическую соду, кислоту, спирт.

Важнейшее практическое значение имеют явления, происходящие на поверхности раздела фаз для всех дисперсных и особенно коллоидных систем. К таки явлениям относится адсорбция - поглощение и концентрирование вещества на поверхности радела фаз. Адсорбирующиеся вещества называются поверхностно - активными (ПАВ), они понижают поверхностное натяжение, имеют большое значение в технологии строительных материалов. ПАВ способствуют получению устойчивых эмульсий и суспензий (адсорбционный слой обволакивает частицы дисперсной фазы и не дает им слипаться); за счет эффекта адсорбционного понижения прочности ускоряют измельчение порошков, пластифицируют растворные и бетонные смеси , гидрофобизуют поверхности и пр.

ФИЗИЧЕСКИЕ СВОЙСТВА

Строительные материалы обладают комплексом физических свойств, числовые показатели которых определяют в лаборатории с помощью специальных приборов и стандартных методов.

К физическим относятся свойства, выражающие способность материалов реагировать на воздействия физических факторов - гравитации, теплоты, воды, звука, электрического тока, излучения и др. Строительные материалы бывают твердые и жидкие. Каждый материал имеет объем и обладает определенной массой.

Масса - совокупность материальных частиц (молекул, атомов, ионов), содержащихся в данном теле или веществе. Масса тела занимает часть пространства, т.е. имеет определенный объем; она постоянна для данного вещества и не зависит от ускорения свободного падения, от скорости его движения и положения в пространстве. Различные тела одинакового объема имеют неодинаковую массу, т.е. обладают разной плотностью.

Важнейшими параметрами физического состояния материалов являются плотность и пористость, а для дисперсных, например порошкообразных материалов, - дельная поверхность, т.е. поверхность, отнесенная к единице объема или массы материала . Плотность характеризуется отношением массы материала к его объему, длине, площади.

Плотность. Истинная плотность р - масса единицы объема однородного материала в абсолютно плотном состоянии, т.е. без учета пор и пустот. Определяется отношением массы m (кг) материала к его объему Va (м3) в абсолютно плотном состоянии р= m/ Va (кг/м3). Истинная плотность каждого вещества - постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры. Плотность, близкой к теоретической, обладают металлы, жидкости, стекло, полимеры.

Плотность твердых и жидких материалов сравнивают с плотностью воды. Наибольшая плотность воды при температуре 4 С равна 1 г/см3, так как масса 1 см3 воды равна 1 г. В основном истинная плотность вещества зависит от его химического состава. Так, у неорганических материалов (природных и искусственных камней), состоящих в основном из оксида кремния, алюминия и кальция, истинная плотность находится в пределах 2,4….3,1 г /см3, у органических материалов, состоящих в основном из углерода, кислорода и водорода, составляет 0,8….1,4 г /см3, у древесины 1,55 г /см3. Истинная плотность металла весьма различна (г /см3): алюминия - 2,7, стали - 7,85, свинца - 11,3.

Средняя плотность р m - масса единицы объема материала в естественном состоянии, т.е. с порами и пустотами. Определяется отношением массы m (кг) материала к его объему V (м3) в естественном состоянии: р m = m/ V (кг/м3).

Средняя плотность (далее мы будем называть ее просто плотностью) - важная физическая характеристика материала, меняющаяся в зависимости от его структуры и влажности. Так, путем изменения структуры можно получить тяжелый бетон плотностью 2400 кг/м3 и особо легкий - плотность менее 500 кг/м3. Средняя плотность оказывает существенное влияние на механическую прочность, водопоглощение, теплопроводность и другие свойства материалов . У плотных материалов числовое значения истинной и средней плотности одинаковы, у других материалов средняя плотность меньше истинной. Плотность строительных материалов колеблется в очень широких пределах: 15 (пористая пластмасса) до 7850 кг/м3 (сталь).

Для сыпучих материалов определяют насыпную плотность. Насыпная плотность р н - масса единицы объема рыхло насыпных зернистых материалов (песка, цемента, гравия, щебня): р н= m| V. Например, истинная плотность гранита - 2700 кг/м3, его средняя плотность - 2670 кг/м3, а насыпная плотность гранитного щебня - 1300 кг/м3.

Пористость - степень заполнения объема материала порами. В большинстве своем материалы содержат поры - малые ячейки, заполненные воздухом или водой. Пористость вычисляют по формуле (%): П=(( р- р m ) / р )*100 и выражают в долях объема материала, принимаемого за 1, или в процентах от объема. Пористость строительных материалов колеблется в широких пределах: от 0 (сталь, стекло) до 98% (мипора).

Отличают открытую и закрытую пористость. Изменяя соотношение объемов открытых и закрытых пор, их размеров, в технологии материалов достигают получение материалов с заданными свойствами. Например, при уменьшении пористости достигается повышение прочности материалов.

При получение теплоизоляционных материалов стремятся увеличить пористость и создать им мелкопористую структуру. Если в общем объеме увеличить долю закрытых пор, то это благоприятно скажется на морозостойкости материалов . Для улучшения звукопоглощающих свойств стремятся создать в материале систему разветвленных и сообщающихся пор. Следовательно, от пористости материалов зависит их средняя плотность, прочность, водонасыщаемость, теплопроводность, морозостойкость, звукопоглощаемость и другие свойства.

Сыпучие и рыхлые материалы (песок, молотый мел, пигменты, , шлак) кроме пор имеют пустоты - воздушные полости между отдельными частицами материала.

Пустотность отношение суммарного объема пустот в рыхлом материале ко всему объему, занимаемому этим объемом. Для численного выражения пустотности необходимо знать плотность и насыпную плотность материала. Пустотность Ппуст вычисляют по той же формуле, что и пористость, и выражают в процентах.

Коэффициент плотности Кпл - степень заполнения объема материала твердым веществом; вычисляют его по формуле Кпл = рm/р. В сумме Кпл+П=1 (или 100%), т.е. сухой материал состоит из твердого каркаса и воздушных пор.

При транспортировке, хранении и в конструкциях материалы могут, подвергается действию воды. Влажные материалы менее прочны, более тяжелы и теплопроводны, чем сухие. Цемент , гипсовые вяжущие, пигменты, клей, и другие материалы портятся от атмосферной влаг, а влажная древесина легко поддается гниению. Свойства, связанные с воздействием на материал воды, называют гидрофизическими.

Гигроскопичность - свойство происто-капиллярного материала поглощать влагу из воздуха. Степень поглощения зависит от температуры и относительной влажности воздуха. С увеличением относительной влажности воздуха и снижением температуры воздуха гигроскопичность повышается. Гигроскопичность характеризуется отношением массы поглощенной материалом влаги при относительной влажности воздуха 100% и температуре +20 С к массе сухого материала.

Гигроскопичность отрицательно сказывается на качестве строительных материалов . Так, при хранении под влиянием влаги воздуха комкуется и снижает свою прочность. Весьма гигроскопична древесина, от влаги воздуха она разбухает, коробится. Чтобы уменьшить гигроскопичность деревянных конструкций и предохранить их от разбухания, древесину покрывают маслеными красками и лаками, пропитывают полимерами, которые препятствуют проникновению влаги в материал.

Капиллярное всасывание - свойство пористо-капиллярных материалов поднимать воду по капиллярам. Оно вызывается силами поверхностного натяжения, возникающими на границе раздела твердой и жидких фаз. Капиллярное всасывание характеризуют высотой поднятия уровня воды в капиллярных материалах и количеством поглощенной воды и интенсивность всасывания. Когда фундамент находится во влажном грунте, грунтовые воды могут подыматся по капиллярам и увлажнять низ стены здания. Во избежание сырости в помещении устраивают слой гидроизоляции, отделяющий фундамент от стены. С увеличением капиллярного всасывания снижается прочность, стойкость к химической коррозии и морозостойкость строительных материалов.

Водопоглощение - свойство материала при непосредственном соприкосновении с водой впитывать и удерживать ее в своих порах. Водопоглощение выражают степенью заполнения объема материала водой (водопоглощение по объему Wo) или отношением количества поглощенной воды к массе сухого материала (водопоглощение по массе Wm). Вычисляют водопоглощение по формуле (%):

Wm=((m2-m1)|m1)*100; Wo=((m2-m1)|V)*100,

Где m1 и m2 - масса материала соответственно в сухом и насыщенном водой состоянии, г; V- объем материала в сухом состоянии, см3. Разделив Wo на Wm, получим зависемость:

Водопоглощение различных материалов находится в широких диапазонах (% по массе): гранита 0,02…1; плотность тяжелого бетона 2….5; керамического кирпича 8….25; асбестоцементных прессованных плоских листов - не более 18; теплоизоляционных материалов 100 и более.

У высокопористых материалов водопоглощение по массе может превышать пористость, но водопоглощение по объему всегда меньше пористости, так как вода не проникает в очень мелкие поры, а в очень крупных не удерживается. Водопоглощение плотных материалов равно нулю (стекло, сталь, битум) Водопоглощение отрицательно сказывается на других свойствах материалов: понижается прочность и морозостойкость, материал набухает, возрастает его теплопроводность и увеличивается плотность.

Влажность - отношение массы воды, находящейся в данный момент в материале, к массе (реже к объему) материала в сухом состоянии. Вычисляется по тем же формулам, что и водопоглощение, и выражается в процентах. При этом массу материала берут в естественном влажном, а не в насыщенном водой состоянии.

При транспортировании, хранении и применении материалов имеют дело не с водопоглащением, а с их влажностью. Влажность меняется от 0% (для абсолютно сухих материалов) до значения полного водопоглощения и зависит от пористости, гигроскопичности и других свойств материала, а также от окружающей среды - относительной влажности и температуры воздуха, контакта материала с водой и т.д. Для многих строительных материалов влажность нормирована. Например, влажность молотого мела - 2 %, комового - 12%, стеновых материалов - 5….7, воздушно-сухой древесины 12….18 %.

Поскольку свойства сухих и влажных материалов весьма различны, необходимо учитывать как влажность материла, так и его способность к поглощению воды. Во всех случаях - при транспортировании, хранении и применении - строительных материалов предохраняют от увлажнения.

Водостойкость - свойство материала сохранять прочность при насыщении его водой. Критерием водостойкости строительных материалов служит коэффициент размягчения Кр= RB/RC - отношение прочности при сжатии материала, насыщенного водой RB, к прочности сухого материала RC. Он изменяется от 0 (для глины) до 1 (стекло, металлы). Материалы, у которых коэффициент размягчения более 0,75, называют водостойкими.

Влагоотдача - свойства материала терять находящуюся в его порах воду. Числовой характеристикой влагоотдачи является количество воды (в %), испарившейся из образца в течении 1 суток при температуре 20 С и относительной влажности воздуха 60 %. Влагоотдачу учитывают, например, при уходе за твердеющим бетоном, при сушке оштукатуренных известковым раствором стене и перегородок. В первом случае желательна замедленная, а во втором - быстрая влагоотдача.

Водопроницаемость - свойство материала пропускать через себя воду под давлением. Степень водопроницаемости в основном зависит от строения пористости материала. Чем больше в материале открытых пор и пустот, тем больше его водопроницаемость. Водопроницаемость характеризуется коэффициентом фильтрации (м/ч) - количеством воды (в м3), проходящей через материал площадью 1 м2, толщиной 1м за 1 ч при разности гидростатического давления на границах стенки 9,81 Па. Чем ниже коэффициент фильтрации, тем выше марка материала по водонепроницаемости. Водонепроницаемыми являются плотные материалы (гранит, металлы, стекло) и материалы с мелкими замкнутыми порами (пенопласты, экструдированный полистирол).

Для гидроизоляционных материалов важна оценка не водопроницаемости, а их водонепроницаемости, которая характеризуется или временем, по истечении которого появляется просачивание воды под определенным давлением через образец материала (мастика, гидроизол), или максимальным давлением воды, при котором она еще не проходит через образец материала за время испытания (специальные строительные растворы).

Воздухо-, газо- и паропроницаемость - свойства материала пропускать через свою толщу соответственно воздух, газ и пар. Они зависят главным образом от строения материалов, дефектов его структуры и влажности. Количественно воздухо - и газопроницаемость характеризуются коэффициентом воздухо - и газопроницаемости, которые равны количеству воздуха (газа) (м3), проходящего в течение 1 ч через 1 м2 материала толщиной в 1 м при разности давлений на поверхность в 9,81 Па. Воздухо - и газопроницаемость выше, если в материале больше сообщающихся пор; наличие воды в порах понижает эти свойства материала.

Паропроницаемость возникает при различном содержании и упругости пара по обе стороны поверхности, что зависит от температуры водяных паров и характеризуется коэффициентом паропроницаемости, который равен количеству водяного пара (в г), проникающего в течение 1 ч через 1 м2 материала толщиной 1м при разности давлений пара на поверхностях 133,3 Па.

Стендовые и отделочные материалы должны обладать определенной проницаемостью, должны «дышать». Достаточные воздухо - газо и паропроницаемость стеновых материалов поддерживают оптимальный для человека воздушно-влажностный режим в помещениях и предотвращают разрушение стен при действии мороза и последующем оттаивании. Во влажных помещениях стены и покрытия защищают с внутренней стороны от проникновения водяного пара. Паронепроницаемые материалы располагают с той стороны ограждения, с которой содержание пара в воздухе больше. Материалы , насыщенные водой, практически газонепроницаемы.

Лакокрасочные покрытия либо уменьшают, либо сохраняют паропроницаемость строительных материалов. Чем меньше паропроницаемость лакокрасочной пленки, тем выше ее антикоррозионные свойства.

Морозостойкость - свойство материалов в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видемых признаков разрушения и без значительного снижения прочности и массы. Морозостойкость - одно из основных свойств, характеризующих долговечность строительных материалов в конструкциях и сооружениях. При смене времен года некоторые материалы, подвергаются периодическому замораживанию и оттаиванию в обычных атмосферных условиях, разрушаются. Это объясняется тем, что вода, находящиеся в порах материала, при замерзании увеличивается в объеме примерно на 9…10 %; только очень прочные материалы способны выдерживать это давление льда (200 МПа)на стенки пор.

Высокой морозостойкостью обладают плотные материалы, которые имеют малую пористость и закрытые поры. Материалы пористые с открытыми порами и соответственно с большим водопоглащением часто оказываются не морозостойкими. Материалы, у которых после установленных для них стандартных испытаний, состоящих из попеременного многократного замораживания (при температуре не выше -17С) и оттаивания (в воде), не появляются трещины, расслаивание, выкрашивание и которые теряют не более 25% прочности и 5 % массы, считаются морозостойкими.

По морозостойкости, т.е по числу выдерживаемых циклов замораживания и оттаивания, материалы подразделяются на марки: Мрз10;15;25;35;50;100;150;200;300;400 и 500. Так, марка по морозостойкости штукатурного раствора Мрз 50 означает, что раствор выдерживает не менее 50 циклов попеременного замораживания и оттаивания без потерь прочности и массы.

Важно понять, что для пористых материалов особенно опасно совместное действие воды и знакопеременных температур. Морозостойкость зависит от состава и структуры материала, она снижается с уменьшением коэффициента размягчения и увеличением открытой прочности.

Критерий морозостойкости материала - коэффициент морозостойкости Кмрз=Rмрз/Rнас - отношение предела прочности при сжатии материала после испытания к пределу прочности при сжатии водонасыщенных образцов, не подвергнутых испытанию, в эквивалентном возрасте. Для морозостойких материалов Кмрз должен быть более 0,75. Принято также считать, что если коэффициент размягчения к Кразм камня не ниже о,95 то каменный материал морозостоек.

Свойства материалов, связаны с изменением температуры, относят к теплофизическим. Они важны для теплоизоляционных и жаростойких материалов, для материалов ограждающих конструкции и изделий, твердеющих при тепловой обработке.

Теплоемкость - свойства материала поглощать при нагревании и отдавать при охлаждении определенное количество теплоты. Теплоемкость - мера энергии, необходимой для повышения температуры материала.

Теплоемкость, отнесенную к единице массы, называют удельной теплоемкостью С (Дж/ (кг*С)). Удельная теплоемкость равна количеству теплоты, необходимому для нагревания 1 кг материала на 1 С. У органических материалов она обычно выше, чем у неорганических (кДж/(кг*С)): древесина - 2,38….2,72; сталь - 0,46, вода - 4,187. Наибольшую теплоемкость имеет вода, поэтому и с повышение влажности материалов их теплоемкость возрастает.

Теплопроводность - свойство материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях. Это свойство имеет важное значение для строительных материалов , применяемых при устройстве ограждающих конструкций (стен, перекрытий, покрытий) и материалов, предназначенных для теплоизоляции. Теплопроводность зависит от его строения, химического состава, пористости и характера пор, от влажности и температуры, при которой происходит передача теплоты.

Теплопроводность характеризируется коэффициентом теплопроводности, показывающим, какое количество теплоты (Дж) способен пропустить материал через 1 м2 поверхности при толщине материала 1 м и разности температур на противоположных поверхностях 1 С в течении 1 ч. Коэффициент теплопроводности (Вт/м*С): воздуха - 0,023, древесины вдоль волокон - 0,35 и поперек волокон - 0,175, воды - 0,59, керамического кирпича -0,82, льда - 2,3. Следовательно, воздушные поры в материале резко снижаются его теплопроводность, а увлажнение - сильно увеличивает, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха.

При замерзании воды в порах материала еще больше увеличивается теплопроводность, так как лед примерно в 4 раза теплопроводнее воды и в сто раз теплопроводнее воздуха. Чем меньше пор, т.е. чем плотнее материал, тем он теплопроводнее. При повышение температуры теплопроводность большинства материалов возрастает и лишь у немногих (особенно у металлов) уменьшается.

Тепловое расширение - свойство материалов расширятся при нагревании и сжиматься при охлаждении, оно характеризуется линейным изменением размеров, и объема материалов важен температурный коэффициент линейного расширения (ТКЛР), показывающий, на какую долю первоначальной длины расширяется материал при повышении температуры на 1 С. Так, для стали ТКЛР составляет (11…11,9)*10-6, для бетона - (10…14)*10-6, для древесины вдоль волокон - (3..5)*10-6. В конструкциях, объединяющих несколько материалов, необходимо учитывать ТКЛР каждого; например, в железобетоне хорошо сочетаются столь и бетон, так как ТКЛР этих материалов почти одинаков. В результате значительного различия ТКЛР в композиционных материалах возникают напряжения, которые могут привести не только к появлению микротрещин и короблению, но и к разрушению материалов.

Огнестойкость - свойство материалов выдерживать без разрушения воздействие высоких температур, пламени и воды в условиях пожара. Материалы в этих условиях либо сгорают, либо растрескиваются, сильно деформируются, либо разрушаются от потери прочности. По огнестойкости различают несгораемые, трудносгораемые и сгораемые.

Несгораемые материалы под действием огня или высокой температуры не горят и не обугливаются. Это , бетон и др. Между тем, некоторые несгораемые материалы - мрамор, стекло, асбестоцемент - при резком нагревании разрушаются, а стальные конструкции - сильно деформируются и теряют прочность.

Сгораемые материалы под действием огня или высокой температуры горят и продолжают гореть после удаления источника огня. Это древесина, обои, битумы, полимеры, бумага и др.

Для повышения огнестойкости материалы пропитывают или обрабатывают огнезащитными составами - антипиренами. При нагревании они выделяют газы, не поддерживающие горения, или образуют на материале пористой защитой слой, замедляющий его нагрев.

Огнестойкие материалы нельзя отождествлять с огнестойкостью конструкции здания и сооружения, так как конструкции, выполненные, например, из сгораемых материалов, но обработанные антипиренами или защищенные от огня штукатуркой или облицовкой из несгораемых материалов, по своей огнестойкости относятся к трудносгораемым.

Для повышения огнестойкости материалов применяют различные огнезащитные покрытия, в том числе краски. Связующими в таких красках служат жидкое стекло, известь, перхлорвиниловые и карбамидные смолы, фосфорброморганические полимеры. Силикатные и другие огнезащитные краски одновременно защищают материалы от огня и выполняют функции отделочного покрытия.

Огнеупорность - свойство материла выдерживать длительное воздействие высокой температуры (от 1580 С и выше), не деформируясь и размягчаясь. Огнеупорные материалы, применяемые для внутренней футеровки промышленных печей, - динас, шамот, ромомагнезит, корунд - не деформируются и не размягчаются при температуре 1580 С и выше. Тугоплавкие материалы (тугоплавкий печной ) выдерживают без расплавления температуру 1350…1580 С, а легкоплавкие ( керамический строительный) - до 1350 С.

Акустические свойства материалов связаны с взаимодействием материалов и звука; прежде всего, это - звукопроводность и звукопоглощение.

Звукопроводность - свойство материала проводить через свою толщину звук; она зависит от строения и массы материала. Тяжелые материалы (), а также пористые и волокнистые плохо проводят звук. Звукопроницаемость - отрицательное свойство, так как в большинстве случаев к строительным материалам предъявляются требования изоляции помещений от внешних шумов. Звукоизоляция - ослабление звука при его проникновении через ограждающие конструкции - это свойство материла, обратной звукопроницаемости.

Звукопоглощение - свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала его толщины, состояния поверхности, а также от частоты звукового тона, измеряемого количеством колебаний в секунду. За единицу звукопоглощения принимают поглощение звука 1 м2 открытого окна; при открытом огне звук поглощается полностью. Звукопоглощение всех строительных материалов меньше единицы. Звукопоглощение материала оценивается коэффициентом звукопоглощения, т.е. отношение энергии, поглощенной материалом, к общему количеству попадающей энергии в единицу времени.

Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью хорошо отражают падающий на них звук, поэтому в помещениях в помещениях с гладкими стенами создается постоянный шум. Материалы с развитой открытой пористостью хорошо поглощают и не отражают падающий на них звук. Специальная акустическая штукатурка с мелкими открытыми порами хорошо поглощает звук и заглушает его. Известно, что ковры, дорожки, мягкая мебель заглушают звук. В принципе те строительные материалы, которые плохо пропускают через себя звук, хорошо его поглощают и не отражают, являются акустическими материалами. Уменьшение шума в результате использования таких материалов сохраняет здоровье людей, создает для них определенные удобства и способствует производительности труда.

Электропроводность - свойство материалов проводить электрический ток. Электропроводными являются металлы, материалы в влажном состоянии - бетон,цементный камень, строительный раствор, древесина.

Радиационная стойкость - свойство материала сохранять свою структуру и физико-механические характеристики после воздействия ионизирующих излучений. Радиация по своему уровню может быть столь высокой, что может вызвать глубокие изменения структуры материала. Например, минералы кристаллической структуры становятся аморфными, что сопровождается объемными изменениями и возникновением внутренних напряжений. Все это заканчивается разрушением материала и птерей его защитных свойств. Для защиты от радиоактивных излучений применяют особо тяжелые (рm= 3000….5000 кг/м3) и гидратные бетоны, имеющие повышенное содержание химически связанной воды, создающей хорошую защиту от нейтронного потока.

Химические и физико-химические свойства
Для правильной и полной оценки материалов при их изготовлении, выборе и эксплуатации в конструкциях необходимо знать и учитывать их химические и физико-химические свойства.

Химические свойства выражают степень активности материала к химическому взаимодействию с реагентами внешней среды и способность сохранять постоянными состав и структуру материала в условиях инертной окружающей среды. Некоторые материалы склонны к самопроизвольным внутренним химическим изменениям в обычной среде. Ряд материалов проявляют активность при взаимодействии с кислотами, водой, щелочами, растворами, агрессивными газами и т.д. Химические превращения протекают также при технологических процессах производства и применения материалов.

Строительные материалы. Лекции. 31

Общие сведения о строительных материалах.

В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции из которых они возводятся подвергаются различным физико-механическим, физическим и технологическим воздействиям. От инженера-гидротехника требуется со знанием дела правильно выбрать материал, изделия или конструкцию которая обладает достаточной стойкостью, надёжностью и долговечностью для конкретных условий.

Лекция №1 Общие сведения о строительных материалах и их основные свойства.

Строительные материалы и изделия, применяемые при строительстве, реконструкции и ремонте различных зданий и сооружений, делятся на природные и искусственные, которые в свою очередь подразделяются на две основные категории: к первой категории относят: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории - специального назначения: гидроизоляционные, теплоизоляционные, акустические и др.

Основными видами строительных материалов и изделий являются: каменные природные строительные материалы из них; вяжущие материалы неорганические и органические; лесные материалы и изделия из них; металлические изделия. В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от наружного холода; материал сооружения гидромелиоративного назначения – водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорого (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.

Классифицируя материалы и изделия, необходимо помнить, что они должны обладать хорошими свойствами икачествами .

Свойство – характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.

Качество – совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.

Свойства строительных материалов и изделий классифицируют на три основные группы: физические, механические, химические, технологические и др.

К химическим относят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.

Физические свойства : средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.

Механические свойства : пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.

Технологические свойства : удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

Физические и химические свойства материалов.

Средняя плотность ρ 0 массыmединицы объёмаV 1 абсолютно сухого материала в естественном состоянии; она выражается в г/см 3 , кг/л, кг/м 3 .

Насыпная плотность сыпучих материалов ρ н массыmединицы объёмаV н просушенного свободно насыпанного материала; она выражается в г/см 3 , кг/л, кг/м 3 .

Истинная плотность ρ массыmединицы объёмаV материала в абсолютно плотном состоянии; она выражается в г/см 3 , кг/л, кг/м 3 .

Относительная плотность ρ(%) – степень заполнения объёма материала твёрдым веществом; она характеризуется отношением общего объёма твёрдого вещества V в материале ко всему объёму материала V 1 или отношением средней плотности материала ρ 0 к её истинной плотности ρ: , или

.

Пористость П - степень заполнения объёма материала порами, пустотами, газо-воздушными включениями:

для твёрдых материалов:

, для сыпучих:

Гигроскопичность - способность материала поглощать влагу из окружающей среды и сгущать её в массе материала.

Влажность W (%) – отношение массы воды в материале m в = m 1 - m к массе его в абсолютно сухом состоянии m :

Водопоглащение В – характеризует способность материала при соприкосновении с водой впитывать и удерживать её в своей массе. Различают массовое В м и объёмное В о водопоглащение.

Массовое водопоглащение (%) – отношение массы поглощённой материалом воды m в к массе материала в абсолютно сухом состоянии m :

Объёмное водопоглащение (%) – отношение объёма поглощённой материалом воды m в / ρ в к его объёму в водонасыщенном состоянии V 2 :

Влагоотдача – способность материала отдавать влагу.

|| Кирпичная кладка || Бутовая и бутобетонная кладка || Лицевая кладка и облицовка стен || Гидроизоляция каменных конструкций || Проведение работ в зимних условиях || Печная кладка

К физическим свойствам материала относятся плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.

Плотность. Плотность материала бывает средней и истинной. Средняя плотность определяется отношением массы тела (кирпича, камня и т.п.) ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты. и выражается в соотношении кг/м 3 . Истинная плотность - это предел отношения массы к объему без учета имеющихся в них пустот и пор. У плотных материалов, таких как сталь и гранит, средняя плотность практически равна истинной, у пористых (кирпич и т. п.) - меньше истинной.

Таблица 1. Истинная и средняя плотность некоторых строительных материалов.

Материал Плотность, кг/м 3
истинная средняя
Сталь 7850-7900 7800-7850
Гранит 2700-2800 2600-2700
Известняк (плотный) 2400-2600 1800-2400
Керамический кирпич 2600-2700 1600-1900
Тяжелый бетон 2600-2900 1800-2500
Поропласты 1000-1200 20-100

Пористость. Эта характеристика определяется степенью заполнения объема материала порами, которая исчисляется в процентах. Пористость влияет на такие свойства материалов, как прочность, водопоглощение, теплопроводность, морозостойкость и др. По величине пор материалы разделяют на мелко-пористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор - от десятых долей миллиметра до 1-2 мм). Пористость строительных материалов колеблется в широком диапазоне. Так, например, у стекла и металла она равна нулю, у кирпича она составляет - 25-35%, у мипоры - 98%.

Водопоглощение - способность материала впитывать и удерживать в своих порах влагу. По объему водопоглощение всегда меньше 100%, а по массе может быть более 100%, например у теплоизоляционных материалов. Насыщение материала водой ухудшает его основные свойства, увеличивает теплопроводность и среднюю плотность, уменьшает прочность. Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью и характеризуется коэффициентом размягчения. Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Их применяют в конструкциях, находящихся в воде, и в местах с повышенной влажностью.

Влагоотдача - это свойство материала терять находящуюся в его порах влагу. Влагоотдача характеризуется процентным количеством воды, которое материал теряет за сутки (при относительной влажности окружающего воздуха 60 % и температуре +20 °С). Влагоотдача имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря водоотдаче высыхают - вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, т.е., пока материал не достигнет воздушно-сухого состояния.

Гигроскопичность - свойство пористых материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессования и др.) могут поглощать большое количество воды. При этом увеличивается их масса, снижается прочность, изменяются размеры. Для некоторых материалов в условиях повышенной и даже нормальной влажности приходится применять защитные покрытия. А такие материалы, как кирпич сухого прессования можно использовать только в зданиях и помещениях с пониженной влажностью воздуха.

Водопроницаемостью называют способность материала пропускать воду под давлением. Эта характеристика определяется количеством воды, прошедшей при постоянном давлении в течение 1 часа через материал площадью 1 м 2 и толщиной 1 м. К водонепроницаемым относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).

Морозостойкость - это способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без снижения прочности и массы, а также без появления трещин, расслаивания, крошения. Для возведения фундаментов, стен, кровли и других частей здания, подвергающихся попеременному замораживанию и оттаиванию, необходимо применять материалы повышенной морозостойкости. Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, с водопоглощением не более 0,5%, обладают высокой морозостойкостью.

Теплопроводность - свойство материала передавать теплоту при наличии разности температур снаружи и внутри строения. Эта характеристика зависит от ряда факторов: природы и строения материала, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Кристаллические и крупнопористые материалы, как правило, более теплопроводны, чем материалы аморфного и мелкопористого строения. Материалы, имеющие замкнутые поры, обладают меньшей теплопроводностью, чем материалы с сообщающимися порами. Теплопроводность однородного материала зависит от средней плотности - чем меньше плотность, тем меньше теплопроводность, и наоборот. Влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз выше теплопроводности воздуха. От теплопроводности зависит толщина стен и перекрытий отапливаемых зданий.

Звукопоглощением называется способность материала ослаблять интенсивность звука при прохождении его через материал. Звукопоглощение зависит от структуры материала: сообщающиеся открытые поры поглощают звук лучше, чем замкнутые. Лучшими звукоизолирующими показателями обладают многослойные стены и перегородки с чередующимися слоями пористых и плотных материалов.

Огнестойкость - это свойство материалов противостоять действию высоких температур. По степени огнестойкости материалы делят на несгораемые, трудно-сгораемые и сгораемые. Несгораемые материалы (кирпич, бетон, сталь) под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться. Трудносгораемые материалы (фибролит, асфальтовый бетон и т.д.) тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются. Сгораемые материалы (дерево, рубероид, пластмассы и т. д.) воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.

© 2000 - 2002 Oleg V. сайт™